
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A232 420

OTIC
' ELECTE
bAR12 1991 u

THESIS
PARALLEL- PROCESSO R- B AS ED

GAUSSIAN BEAM TRACER
FOR USE IN OCEAN ACOUSTIC TOMOGRAPHY

by

Roderick Spencer Scott

June 1990

Thesis Advisor: J.H. Miller
Co-Advisor: C.S. Chiu
Co-Advisor: C. Yang

Approved for public release; distribution unlimited.

91 3 06 028

Unclassified
Securitv Classification of this page

REPORT DOCUMENTATION PAGE
I a Report Security Classification Unclassified Ib Restrictive Markings

2a Se. iritv Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited
4 Performing Organization Report Number(s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School](If Applicable) 62Mr Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

I (applicable_
8c Address (city, atate, and ZIP code) 10 Source of Funding Numbers

Program Element Number Pro e No ITask oTWork Urt Accession N..

11 Title (Include Security Classification) PARAI LEL-PROCESSOP-BASED GAUSSiAN BEAM TRACER FOR
USE IN OCEAN ACOUSTIC TOMOGRAPHY
12 Personal Author(s) Scott, Roderick, S.
13a Type of Report 1 3b Time Covered 14 Date of Report (year, month,day) 15 Page Count
Master's Thesis From To I June 1990 1137
16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
1 7 Cosati Codes 1 8 Subject Terms (continue on reverse if necessary and identify by block number)

Field Group Subgroup Acoustic Tomography, Ray Tracing, Parallel Processing, Gaussian Beams,
I I Transputers

1 9 Abstract (continue on reverse if necessary and identify by block number)
This thesis presents a parallel-processor-based acoustic ray tracing algorithm tor use in predicting
multipath arrival times and amplitudes, for use in ocean acoustic tomography experiments. The Runge-
Kutta-Fehlberg numerical integration method was chosen, out of three other methods, to numerically solve
the ray equations. Cubic splines were used to interpolate the sound speed profile and bottom bathymetry
data. The method of Gaussian beam tracing was used to compute the multipath amplitudes at a given
receiver location. The ray tracing algorithm is written in C, and is designed to run using a
Macintosh 11-based host application and a transputer based, parallel processing workfarm.

20 Distribution/Availability of Abstract 21 Abstract Security Classification
[unclassified/unlimited [] sameasreport [] DTIC users Unclassified

22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office Symbol

James H. Miller (408) 646-2384 62Mr
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited

Parallel-Processor-Based Gaussian Beam Tracer
For Use in Ocean Acoustic Tomography

Roderick Spencer Scott
Captain, Canadian Forces

B.Eng., Royal Military College of Canada, 1984

Submitted in partial fullfillment of the

requirements for the degrees of

MAt) fE, OF SCIENCE IN ENGINEERING ACOUSTICS

and

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author: _--_ _ _ _ _ _
Ro derick Spencer Scott

Approved by:
ja~ge H. Miller, Thesis Advisor

Ching-Sang Chiu, Thesis Co-Advisor

C CanYan T Co-Al'isor

Anthoiy A. tchleN/Chairman,
Engineering Acoustics A demic Committee

John P vf himan, Department of Electrical

and Computer Engineering

ii

ABSTRACT

This thesis presents a parallel-processor-based acoustic ray tracing

algorithm for use in predicting multipath arrival times and amplitudes, for
use in ocean acoustic tomography experiments. The Runge-Kutta-Feblberg

numerical integration method was chosen, out of three other methods, to

numerically solve the ray equations. Cubic splines were used to interpolate

the sound speed profile and bottom bathymetry data. The method of

Gaussian beam tracing was used to compute the multipath amplitudes at a
given receiver location. The ray tracing algorithm is written in C, and is

designed to run using a Macintosh II-based host application and a

transputer-based, parallel processing workfarm.

NTIS CTRA&IDTIC TAB
Unaniouncerd 0
Just I'ft on-

Ave.A:ab~li- Coas_

- j±t1"id/or

I I _

iii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed for this

research may not have been exercised for all cases of interest. While every

effort has been made within the time available to ensure that the programs

are free of computational and logic errors, they cannot be considered

validated. Any application of these programs without additional verification

is at the risk of the user.

Many terms used in this thesis are registered trademarks of commercial
products. Rather than attempting to cite each individual occurence of a

trademark, all registered trademarks appearing in this thesis are listed below

the firm holding the trademark:

Apple Computer Corporation, Cupertino, CA:

Macintosh II

MPW

INMOS Limited, Bristol, United Kingdom:

Transputer

Occam

IMS T800

Levco, Inc., San Diego, CA:

TransLink

Link II

Symantec Corporation, Cupertino, CA:

Think C

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1
dA. OCEAN ACOUSTIC TOMOGRAPHY.. I

B. THESIS ORGANIZATION ... 3

11. RAY TRACING .. 5

A. RAY THEORY.. 5
B. METHODS FOR SOLVING THE RAY PATH 7

1. Ray Equations ... 7
2. Sound Speed Profile Interpolation10

3. Solution of the Ray Equations ... 12

111. NUMERICAL INTEGRATION METHODS COMPARISON................ 13
A. NUMERICAL INTEGRATION METHODS 13

1. General... 13
2. Runge-Kutta with Fixed Step Size 14

3. Runge-Kutta-Fehlberg ... 16
4. Adams-Bashforth-Moulton with Fixed Step Size................ 17
5. Adams- Bashforth-Moul ton with Variable Step Size 18

B. ALGORITHM TESTING AND RESULTS 19

1. Test Scenario ... 19
2. Test Results... 21

3. Algorithm Implementation .. 23

C. DISCUSSION ... 24

IV. GAUSSIAN BEAM TRACING ... 25
A. BACKGROUND.. 25

1. Intensity Calculations.. 25
2. Eigenrays .. 27

B. GAUSSIAN BEAMS.. 27

1.- General... 27
2. Gaussian Beam Equations ... 28

3. Initial Conditions.. 31

V

4. Beam Contribution Computation 32

5. Reflection at Boundaries .. 33

V. PARALLEL PROCESSING... .. 35

A. BACKGROUND.. 35

1. Granularity.. 35

2. Communication and Synchronizatior............................... 36

B. T800 TRANSPUTER ARCHITECTURE 37

1. Central Processing Unit.. 37

2. Floating Point Unit.. 38

3. Timers, Processes and Process Scheduling 39

4. Communication Links........................... 41

5. Performance .. 42

C. PARALLEL ALGORITHMS ... 43

1. Main Types.. 43

2. Processor Workfarm ... 44

a. General .. 44

b. Workfarm Processes.. 45

C. Buffer Processes ... 45

d. Controller Process .. 47

e. Process Priority .. 47

VI. IMPLEMENTATION .. 49

A. DEVELOPMENT SYSTEM... 49

1. Hardware.. 49

2. Software Tools ... 49

a. Macintosh .. 49

b. Transputer.. 49

B. RAY TRACER... 50

1. Numerical Integration ... 50

2. Turning Points... 51

3. Surface Reflections.. 52

4. Bottom Reflections.. 53

C. GAUSSIAN BEAMS.. 55

vi

D. PARALLEL PROCESSING 55

1. Parallelization of Ray Tracer .. 55

2. Message Formats ... 56
E . H O S T 57

1. Macintosh Programming ... 57
2. Transputer Interface ... 57

F. OVERALL ALGORITHM SETUP 58

V II. R E SU L T S .. 59

A . G EN E RA L .. 59
B. RAY TRACING .. 59

1. Comparison with Analytic Example 59
2. Example with Bottom Bathymetry .. 63

3. Munk Profile Example ... 66
C. GAUSSIAN BEAMS ... 66

1. Example I - Receiver at Range 68 km, Depth 1500 m 66

2. Example 2 - 50 Rzy Path ... 74
D. PARALLEL PROCESSING .. 79

1. G eneral... 79
2. General Observations ... 80

a. Data Reporting .. 80

b. ProcAlt Function ... 80

c. D ebugging .. 81

d. Work Packet Buffering .. 82
3. Results of Optimization ... 82

VIII. CONCLUSIONS AND RECOMMENDATIONS 85
A. CONCLUSIONS .. 85
B. RECOMMENDATIONS ... 86

1. R ay Tracing .. 86

2. Parallel I-rocessing .. 86
3. M iscellaneous .. 87

vii

APPENDIX A - TRANSPUTER SOFTWARE ROUTINES 88

A. WORKFARM .. 88

B. RAY TRACER... 88

1. Numerical Integration ... 88

a. RKF4 ... 88

b. reduces tep... 89

2. Turning Points... 89

a. turnpoint ... 89

b. bottomnstep.. 89

3. Gaussian Beams ... 89

a. Gamin.. 89

b. sqrtBranch... 90

C. GaussSumm .. 90
4. Support Routines.. 90

a. control... 90

b. c(z).. 90

C. bottoinval... 90

d. fcn... 91

e. setup.. 91

f. tpq... 91

g. increment... 91

h. Complex Math Functions .. 91

C. MAIN LISTING .. 91

D. INCLUDE FILES .. 116

1. messageID.h... 116

2. raydefs.h.. 116

APPENDIX B - MACINTOSH APPLICATION STRUCTURE 120

LIST OF REFERENCES... 122

INITIAL DISTRIBUTION LIST... 125

viii

ACKNOWLEDGEMENTS

I would like to thank Dr. James H. Miller, my primary thesis advisor for
his encouragement and support - without him, my thesis work would not
have been bo enjoyable. Also I would like to thank my co-advisors,
Dr. Ching-Sang Chiu and Dr. Chyan Yang, for their expert advice, support and

friendship.

Finally, I dedicate this thesis to my wife Claire and my children,

Christine and Eric, who gave up so much and asked for so little in return.
Without them it would not have been worthwhile - or even possible.

ix

I. INTRODUCTION

A. OCEAN ACOUSTIC TOMOGRAPHY

"Ocean acoustic tomography is a technique for observing the dynamic
behaviour of ocean processes by measuring the changes in travel time of
acoustic signals transmitted over a number of ocean paths." (Spindel, 1)86,

pp. 7-13) Ocean acoustic tomography has been concerned with measuring the
mesoscale fluctuations and features of the ocean which are characterized by

dimensions in the hundreds of kilometers and time scales on the order of

months.

The term tomography is derived from the Greek word "tomo" which

means "cut" or "slice". Ocean acoustic tomography was originally proposed

by Walter Munk and Carl Wunsch and methods for inverting observed data
to obtain sound speed fluctuations were presented in Munk (1979). The speed

at which sound travel, through the ocean is a function of many factors

including temperature, salinity and pressure. In addition, travel times can be

affected by currents. By looking at a "slice" of the ocean between severai

points (moorings) using acoustic transmissions, the travel time information

obtained is used to estimate these fluctuations in ocean variables. This is

done using inverse techniques in a fashion similar to that done in Computer

Assisted Tomography (CAT) where X-rays are used to yield a two-

dimensional view of the interior of the human anatomy.

Measurements in the ocean can be made using a number of acoustic

sources (S) and receivers (R) as depicted in Figure 1.1. Whereas spot
measurements would yield S+R pieces of information and would Le

contaminated by small scale fluctuations, the tomography approach is

multiplicative and yields SxR pieces of information. Also measurements of

I

travel time tend to be spatially integrating which effectively smoothes out the

small scale fluctuations. (Munk, 1979, p. 124)

SS

V

RR

R k

Figure 1.1 Example Source and Receiver Array

Of importance in ocean acoustic tomography is the ability to estimate the

possible acoustic paths (multipaths) between a source and receiver and the

information such as travel timc and ener,:y associated with them. One such

method is ray tracing which uses geometrical principles to determine the

paths taken by the acoustic energy. Although ray tracing is based on ertain

limiting assumptions, it provides an intuitive and visual means of

computAlg the acoustic field and the paths followed by the acoustic wave

fronts.

Recently, it has b 2n suggested that tomography could monitor the

circulation of Monteiey Bay, California (Miller et al., 1989). The application of

traditional ray tracing programs has been hampered by their inability to

model propagation through the extreme bathymetry of the Monterey Bay

submarine canyon. The traditional programs have reiied on the

2

determination of eigenrays (rays which connect source and receiver) by

shooting methods. Rays are traced from the source at specified angles and

travel past the receiver range. Eigenrays can be estimated by interpolating

between rays which bracket the receiver depth. This is a very computer-

intensive operation for typical deep ocean tomography scenarios. The

extreme bathymetry of Monterey Bay makes it even more so. This thesis

attempts to make this modelli. - problem more tractable through the use of

Gaussian beam tracing and with a parallel-processor-based workfarm system

running in a Macintosh II desktop computer.

B. THESIS ORGANIZATION

This thesis is organized into eight chapters. Chapter II discusses the basic

theory of geometrical acoustics, or ray tracing. Some basic equations are

derived and common methods for solving these equations are given. A

method of using cubic splines to interpolate sound speed profile data is

presented. Chapter III presents four numerical integration techniques that

were considered for this thesis to solve the basic ray equation. A brief

discussion of numerical integration and each of the methods is given. The

integration methods were tested using a simple ray tracing problem to see

which method was most suitable. The results of this test are presented.

Chapter IV gives a discussion of a relatively new method for computing

acoustic fields in the ocean - Gaussian beam tracing. This method associates

with each ray path, a beam with a Gaussian distribution, and can be used to

scale other acoustic quantities s,,ch as intensity and pressure. The Gaussian

beam method is also free of certain artifacts which are present in

conventional ray tracing techniques, such as infinite energy at caustics and

perfect shadow zones.

Some basic concepts about parallel processing are presented in

Chapter V. The architecture of the T800 transputer and a discussion about the

- arallel processor workfarm is also presented. Chapter VI presents some

implementation aspects of this thesis. Chapter VII presents some results

3

obtained using the ray tracing and gaussian beam algorithms and results from

the parallel processing optimiz7tion. Chapter VIII presents conclusions and

recommendations for further work in this area.

II. RAY TRACING

A. RAY THEORY

The linearized, lossless wave equation for the propagation of sound in

fluids is given by

v2

p =(2.1)

where c is the phase speed of acoustic waves in the fluid and p is the acoustic

pressure. Both c and p are functions of position (i.e., c = c(xy,z), p = p(x,y,z)).

It is often useful to think of the propagation of sound in terms of rays instead

of plane waves. Rays can be defined as lines which are perpendicular

everywhere to surfaces of constant phase (Kinsler, 1982, p. 117). In many cases

rays are easier to work with than waves; however rays are approximations

and are only valid under certain conditions. One possible solution to the

wave equation which leads to the ray approximation is given by

io0[t - F(x,y,z)/c o]
p(x,y,z,t) = A(x,y,z) e , (2.2)

where A is the pressure amplitude, F is a function with units of length and co

is a constant value of phase speed. Surfaces of constant phase are defined by

values of (x,y,z) such that F is constant. The quantity VF is therefore

perpendicular to these surfaces of constant phase. Substituting Equation (2.2)

into the wave equation yields

V2A Co}2 vI'.V' + -2 - C A -V r + = 0. (2.3)

5

If A and VF vary slowly such that

V2A VA
A I <<(CO/c 0)2 , 1V2 PF I W</c, A- V F <<o/c, (2.4)

then Equation (2.3) simplifies to the Eikonal equation

I VFI 2 = n 2, (2.5)

where
C

n(x,y,z) c(x,y,z)(2.6)

is the index of refraction. The conditions given in Equation (2.4) can be met if

the amplitude of the wave and the speed of sound do "...not change

appreciably in distances comparable to a wavelength." (Kinsler, 1982, pp. 117-

118)

Solution of Equation (2.5) yields the ray path trajectories that the acoustic

energy follows. The behaviour of VF is given by

d-s(VF) = Vn, (2.7)

which, if the sound speed is a function of depth only (i.e., c = c(z)), leads to a

form of Snell's law

cos 0
c(z) - constant, (2.8)

where 0 is the angle of the ray path measured from the horizontal at a

particular location along the ray path. (Kinsler, 1982, pp. 118-120)

6

B. METHODS FOR SOLVING THE RAY PATH

1. Ray Equations

By the repeated application of Snell's law in a horizontally stratified

medium, the ray path can be determined by

Cos O1 COS 02 COS On

c1 C2 - Cn (2.9)

where the subscripts 1,2, ... n denote the successive layers of the medium (Clay,

1977, p. 83). Again, the speed of sound is assumed to vary only with depth.

An element of the ray path at a point P is shown in Figure 2.1. The quantities

ds, dz and dx represent the differential ray path length, vertical displacement

and horizontal displacement respectively.

p dx x (range)

dz

z (depth)
T (d p h

Figure 2.1 Element of Ray Path at Point P

From Figure 2.1 we have

ds2 = dz2 + dx2. (2.10)

Dividing both sides by dx and solving for the differential change in depth (dz)

with respect to the differential change in range (dx) yields

7

or

dz (s

Also from Figure 2.2 we have the relation

ds 1d- cos
(2.13)

From Snell's law we have

cos 0 cos 00
- - a, (2.14)c c(z)=a

so that

cos 0 = a c(z), (2.15)

where a is the Snell's law constant of the ray (Clay, 1977, p. 84). Substituting

this result into Equation (2.12) and taking the positive branch of the square

root yields

dz 1
dx 1, (2.16)

the differential change in depth with respect to a differential change in range.
The differential travel time along the ray segment is given by (Clay, 1977,

p. 84)

dt 1
ds c(z) (2.17)

or
dxdt- c(z) co e

(2.18)

8

These relations can also be expressed as integrals along the ray from an initial
range xi to a final range xf

Zf - Zi = (2.19)

(ag(1 -

Xf
x

tf - ti = c(z)cos e" (2.20)

Xi

Although the speed of sound is a continuous function of depth, a

common approximation made in some ray tracing implementations is to

break the sound speed profile into linear segments, or layers as shown in

Figure 2.2. This is natural since the sound speed is usually only known (i.e.,

measured) at discrete depth points.

c [m/si

z [m]

Figure 2.2 Linear Approximation of Sound Speed Profile

9

Note that the thicker curved line in Figure 2.2 represents the actual sound

speed profile; the thin straight lines represent the linear approximations and

the dashed lines represent the layers.

Once this linear approximation is made to the sound speed profile,

the ray path within a particular layer can be evaluated analytically. The result

is that the ray path follows the arc of a circle whose radius is given by

1
radius = ag (2.21)ag'

where a is the Snell' s law constant defined in Equation (2.14) and g is the

constant sound speed gradient (dc/dz) within the layer (Clay, 1977, p. 87).

Although this method is simplistic and suitable for hand calculation, it can
yield unsatisfactory results due to discontinuities in dc/dz at the interfaces

(Pederson, 1961, pp. 465-474).

2. Sound Speed Profile Interpolation

To avoid the problems associated with using linearly segmented

sound speed profiles, a method of curve fitting the sound speed data was

chosen. The cubic spline method was used for its simplicity and satisfactory

results in smoothly interpolating the sound speed profile data. The cubic

spline involves approximating a curve by fitting a third-degree polynomial

between each pair of points. The polynomials are computed so that they pass

through the given data points and are twice differentiable (Moler, 1970,

p. 740). The data points are not required to be equally spaced. Because the

resultant curve is an interpolation rather than a smoothing of the data points,

the data points are assumed to be free of significant measurement errors.

To compute the spline coefficients, it is assumed that the sound

speed data is given as a set of n points such that ci = c(zi), i = 0,1,..., n. The
spline coefficients ai, i = 1,2,...,n-1, are computed once for a given data set by

solving the n-I simultaneous linear equations

10

Azi ai-i + 2(Azi + Azi+l) ai + Azi+1 ai+1 = Aci+1 - Aci, i = 1,2,...,n-1, (2.22)

where
Azi = z, - zi_1 , (2.23)

ci - C- 1

Aci , i= 1,2.n, (2.24)Azi

and a0 and an are assumed to equal zero. The n-1 linear equations given in

Equation (2.22) are tridiagonall in form and can be solved easily using special
tridiagonal matrix algorithms (Gerald, 1985, pp. 146-147). Once the spline
coefficients are known, the following values are easily computed for a given
value of z in the subinterval zi-i < z < zi (Moler, 1970, p. 740)

c(z = wci-1 + wci + (Azi) 2 [ai-l(3 - _W) + ai(w 3 - w)], (2.25)

c'(z) = Aci + Azi [-ai-1 (3W 2 - 1) + ai(3w 2 - 1)], (2.26)

c"(z) = 6 (Wai_1 + wai), (2.27)

where
Z - zi.1w- ANzi (2.28)

and

W =1 - w, (2.29)

and c(z), c'(z) and c"(z) represent the speed of sound and its first and second

derivatives respectively.

Tridiagonal matrices have non-zero elements only on the diagonal and immediately
adjacent to the diagonal.

11

3. Solution of the Ray Equations

With the ability to estimate the sound speed at all depths through

the use of cubic splines, the problem of determining the ray path is a matter of
numerically solving Equations (2.16) and (2.17) or equivalently, Equations

(2.19) and (2.20). Numerical integration, at a most basic level, involves

stepping the solution in the independent variable direction (dx) and solving

for the subsequent change in the dependent variable (dz and dt) as specified by

the numerical integration method being used. Equations (2.16) and (2.17)

could easily be solved using an existing numerical integration package (e.g.,

IMSL). Since the target processor for this ray tracing algorithm was the

transputer, it was necessary to write a new numerical integration algorithm.

This did however give the opportunity to write an application-specific

algorithm that would not require as much overhead as perhaps a general

purpose one. Also, it gave an opportunity to invesigate different numerical

integration algorithms and determine which was most suitable to the ray

tracing problem. A comparison of four numerical integration algorithms is
given in Chapter III.

12

III. NUMERICAL INTEGRATION METHODS COMPARISON

A number of numerical integration algorithms were examined and

evaluated to see which would be best suited to solving Equation (2.9). They
were tested on the basis of their speed, accuracy and ease of implementation.

Each method was evaluated using only a simple scenario - a bilinear sound

speed profile, a fixed source depth and receiver range. This simple scenario
meant that full ray tracing algorithms, able to handle all conditions (i.e.,

surface and bottom reflections) were not required for each method.

A. NUMERICAL INTEGRATION METHODS

1. General

Four numerical integration methods were evaluated, consisting of

two basic types - single step (self-starting) and multistep (predictor-corrector)

types. Single step methods are self-starting since they only use information
from the previous step. Therefore, to start they only require the initial

conditions of the problem and they are able to use different step sizes
throughout the integration. Multistep methods take advantage of the

information computed in multiple past steps. Therefore, a set of initial

conditions is not sufficient to start them. They must be started using single

step methods until enough past values are available so they may continue on

their own. (Gerald, 1985, p. 312)

The order of a numerical method is related to the amount of
accumulated (global) error Ei[h] or the per-step truncation (local) error ej[h] at

a part cular step j, where h represents the integration step size. If Ej[h] is O(h n)

then ej[h] is O(hn,1), and the method is considered to be n-th order (Maron,

1982, pp. 340-341). The four methods evaluated are all fourth-order methods.

13

To solve Equation (2.16) numerically, the solution or ray path, is
started at the source depth and range (zo,xo) and initial take-off angle (o,). The
ray path is then stepped in range (x) and an estimate of the new depth (zi+) is

computed by numerical integration. This process is repeated until the
receiver range (xr) has been reached. Note that, in the following discussions

of the integration methods, the function f refers to Equation (2.16).

2. Runge-Kutta with Fixed Step Size

The fourth-order Runge-Kutta (RK) method (Gerald, 1985, p. 308) is

a single step method which requires four function evaluations, or sample
slopes, per iteration. A common Runge-Kutta formula, as apt ied to the ray

tracing problem, is

h

Zj+ = zj + - {k, + 2(k 2 + k 3) + k4 }, (3.1)

where
kl = f(zj, xi), (3.1.1)

1 1
k2 = f(z + i hk1 , xi + - h), (3.1.2)

1 1

k3 = f(zj + hk 2, xi + h), and (3.1.3)

k4 = f(zj + hk 3, xi + h). (3.1.4)

The above equations for k1 ,...,k 4 represent the sample slopes for various

values of z and x, that is f(z,x). The term h refers to the step size or dx, the

differential change in range. In the case where the speed of sound varies only
with depth (c = c(z)), the function f is only dependent on depth. Therefore the
range values are not required and the sample slope equations simplify to

k= f(z), (3.1.5)

k2 = f(zj + hkl), (3.1.6)

k3 = f(zj + hk2), and (3.1.7)

k4 = f(zj + hk3). (31.8)

14

These sample slopes are illustrated in Figure 3.1. The z coordinates of theI I

sample points P 1,...,P 4 correspond to zi, z1 + 2 hk1 , zj + hk 2 and z) + hk 3

respectively. The sample slopes kl. .. ,k4 are the values of f at the sample

points P 1.... ,P4.

x

P4

Slop- k4~ .' - Ray Patt

Slopelop = k

zj-Sop "--kP 32lp

P P2 lopek2

Figure 3.1 Sample Points and Slopes at (zj,xj)

It is possible to check the accuracy of the RK solution by computing

a second estimate of the function with the step size h reduced by one-half.

The two solutions can be compared and if a significant difference exists, the

integration can be continued using the reduced step size. This approach

however requires the calculation of eight more function evaluations per step

and represents much more programming effort to implement. An

alternative to this approach is to compute more than four sample slopes at

each step and use this extra information to yield a second estimate of the

solution zil. The second estimate of z can be used to adjust the step size up

or down depending on whether the quantity dz/dx varies slowly or rapidly

(i.e., at turning points) with range. One such method that employs this

15

technique is the Runge-Kutta-Fehlberg algorithm. (Maron, 1982, pp. 348 351)
(Gerald, 1985, pp. 309-310)

3. Runge-Kutta-Fehlberg

The Runge-Kutta-Fehlberg (RKF) method is a single-step method
with variable step size. The RKF method uses six function evaluations per
step and is capable of estimating the error at every step using this extra
information. By comparing the error estimate to a fixed error tolerance
value, the step size is adjusted up or down accordingly after each step.
Although it requires two more sample slopes than the simple Runge-Kutta
method, the RKF method is more accurate and can be more efficient because
of the step size control. This is illustrated later in Section B - "Test Results."

The RKF equations (Maron, 1982, pp. 350-351), again for the range

independent case (c = c(z)), are

25 1408 2197
zj+l = zj + 25 k, + 2 4 k 3 + 19 k4 -3 k5, (3.2)

1 128 2097 1 2

Error Estimate = 60 k1 - 2- 75240 k4 + k5 + T k6, (3.2.1)

where

k = hf(z), (3.2.2)1

k 2 = hf(zj + 4 kl), (3.2.3)
3 9

k3 = hf(zj + T kl + T k 2), (3.2.4)
1932 7200k 7296

k4 = hf(z1 + 1 k1 - k 2 + 197 k3), (3.2.5)
439 3680 845

k5 = hf(zj + j-6 kl - 8k 2 + 53 - k4, and (3.2.6)
8 3544 1859 11

k6 = hf(zj - kl + 2k 2 + - k3 + -- 4 k, - T k5). (3.2.7)

The integration step size adjustment is performed in the following

manner

After computing the kl,... ,k6 values, the error estimate (Equation

3.2.1) is computed. If the ratio of the error estimate divided by the

16

step size is less than the error tolerance value, then 7 j±1 is .oniputed

using Equation (3.2) and the raitge is incremented by the step size h.

" A step-size scale factor is then computed, regardless of whether z,,]

is computed or not, as follows
(tolerance x h

Scale factor = 0.84 (error estimate! (3.3)

" The step size is then scaled (h = Scale factor x h) and the k values

computed for the next iteration. Two fixed values representing

maximum and minimum scale factors are also used to control how

fast the step size can vary at any one time.

The error estimate, Equation (3.2.1), is approximately equal to the per-step

truncation error, namely eil[h]. (Maron, 1982, p. 351)

4. Adams-Bashforth-Moulton with Fixed Step Size

The Adams-Dashforth-Moulton (ABM) method is a multistep or

predictor corrector method. It uses four previously computed values to

compute a new one and is therefore not capable of self-starting. The ABM

equations are (Maron, 1982, pp. 354-356):

the Adams-Bashforth predictor

h

pj+l = zj + T {-9/ 3 + 37fi-2 - 59fi-1 + 55fj), (3.4)

the Adams-Moulton corrector

h

Cj+l zj + i {fj-2 - 5fi-1 + 19fi + 9fi+j(p±jl)}, (3.5)

and the error estimate

19
8j+1 = t- (cj+i -pi+l). (3.6)

17

The error estimate 8j+1 is a measure of the local error ej+l[h] and can be used to

determine whether the corrector value cj+l is accurate enough. If not, it can be

recomputed using another function estimate, namely the function evaluated
using the corrector value (i.e., f(cj+l)). Although this method is not self-

starting, since the fj-3,.-.,fj are not known, it only requires two or three

function evaluations per iteration. A common method of starting (or
restarting) is to use the fixed-step-size, fourth-order Runge-Kutta method,

slightly modified to save the function values fj-3,-..,fj in addition to the

Zj_3 .,Zj computed values. (Maron, 1982, pp. 355-357)

5. Adams-Bashforth-Moulton with Variable Step Size

This is the same method described above with the exception that

the step size h can be adjusted in one of two ways based on the error estimate

5j+1. The first is to scale the step size in the same fashion as outlined in the

Runge-Kutta-Fehlberg method. However, once the step size is scaled the
integration must be restarted. The second approach is to double or halve h

only. If the error is unacceptable, then the step can be halved by using the

following equations (interpolating quartics) to compute bisecting values

fj-1i2 = 1 {-5fj-4 + 28fj_3 - 70fj-2 + 140f 1 + 35fj }, (3.7)

fj-3/2 = ' 3fH - l 6 fj3 + 5 4 fj-2 + 24fj- I- fj }. (3.8)

If the error is acceptable then the step size can be doubled by using every

second function value. These step adjustments are depicted in Figure 3.2. For
a normal step the new value, f 1, is computed using the four previous values

f-3,... ,f. When the error is considered too large, the new value, f 1/2 , is

computed using f-3/2, f-l, f-1/2 and fo and the step size is reduced by one-half.

When the error is acceptable, a new step, f2 , is computed using f-6, f-4, f-2

and fo, thus doubling the step size. Note that doubling the step size requires

that seven previous function values must be stored. (Maron, 1982, pp. 357-

18

359) This method will be referred to as ABMQ, where the "Q" represents the
use of the interpolating quartic equations.

N orm al~ tep- -
Normal Step ~ Z

f-4 f-3 f-2 f-1 0A0 1

S too large here

Half Step 0 1) /

L32 f-1/2 fl 2

5 small enough here
___ ___1_ /

Double Step . ,
f i -5 4: -3 f-2 f-i to '1 2
f: f-:I f

Figure 3.2 Adams-Bashforth-Moulton Step Size Adjustment

B. ALGORITHM TESTING AND RESULTS

1. Test Scenario

The numerical integration methods decribed previously were tested
using a simple bilinear sound speed profile as shown in Figure 3.3. The test

sound speed profile consists of one gradient of -0.05 s-1 from the surface down

to 400 meters and another of +0.05 s-1 from 400 meters to 800 meters. A
source depth of 200 meters was chosen so that a ray leaving the source at 0'
would be channeled between 200 and 600 meters and would not interact with
the surface or the bottom. This reliable acoustic path (RAP) simplified the
support algorithms required to conduct the tests. The ray path is also depicted

in Figure 3.3.

19

C [m/s]
1480 1490 1500

0 0

2O 200

400 400

600 600

z [m] 800 800
0 10000 20000 30000 4)00 50000

range (m]

Figure 3.3 Sound Speed Profile and Ray Path

All rays were traced out to a range of 100 kilometers which was

considered adequate to reveal round-off error accumulation effects. A
function to compute the analytic solution of this ray path was also used to
compare the results (i.e., the depth) at any given range value. The spline

interpolation method was not used in this case so that an analytic solution

would be available for comparison.

To determine which numerical integration method was the most

efficient in terms of speed and accuracy, a maximum allowable depth error
was first chosen. Each algorithm was then run several times to determine

which parameters (e.g., step size, error tolerance) were required to satisfy the
given allowable error. A maximum error was chosen because the error

tended to oscillate with respect to range as illustrated in Figure 3.4. This
graph shows the absolute value of the error versus range for the Runge Kutta

algorithm with a fixed step size of 200 m. It is clear from this graph that to

20

simply choose the error at a particular range (e.g., receiver range xr) may give

misleading results.

15•

10"

lerrorI [m]

5 .

0i " I

0 5000 10000 15000 20000

x [ml

Figure 3.4 Example Graph of I Error I vs. Range for Runge Kutta

with Step Size = 200m

2. Test Results

The maximum allowable depth error was chosen to be ±5 m. The

parameters required by each method are given in Table 3.1 and the

normalized timing results are shown in Figure 3.5. It is clear from Figure 3.5
that the RKF method is the most efficient, with an eight-to-one speed

advantage over the next closest method (RK).

21

TABLE 3.1

REQUIRED INTEGRATION PARAMETERS

Method Step Size [m] Error Tolerance Maximum I Error I [m]

RK 45 4.86

RKF - 10 - 5 4.94

ABM 30 4.98

ABMQ - 10 4.98

Integration
Method

RKF

RK

ABMQ

ABM

0 1 2 3 4 5 6 7 8 9 10 11 12
Normalized Time

Figure 3.5 Normalized Timing Results for Maximum Error ±5m

The advantages of a variable-step method versus a fixed-step

method, with regard to the ability to vary the step size and thus control the

accuracy, is illustrated in Figure 3.6. This figure shows the range steps taken

22

by the RKF and RK methods out to a range of 5 km. The data used in this
graph is taken from the test results described previously; therefore the RK

step size is 45m and the RKF error tolerance is 10-5. Evident from Figure 3.6 is
the ability of the RKF method to compute the correct ray path but with a far

greater efficiency.

0

-100 I R

] RKF
-200 0., o ... 0.... 0 RKF

.

-400.
depth [ml-500

-600-

-700

-800 -0 .I I I

0 1000 2000 3000 4000 5000

range [ml

Figure 3.6 Range Steps Used by RKF and RK Methods

3. Algorithm Implementation

Before the integration algorithms were tested as previously

des cribed, they were implemented and tested using standard examples found
in the numerical methods texts (e.g., Maron, 1982, pp. 348-356). Once verified,

the algorithms were modified as required so that Equation (2.9) could be
solved specifically. Although these modifications were not extensive, it is

possible that errors were introduced at this time. This may be the case with

the Adams-Bashforth-Moulton methods. The results of the ABM methods
indicate that either they are not well suited to the ray tracing problem or else
they were not implemented properly. In either case, the ABM methods were

much more difficult to implement than the RK and RKF methods. Had the

23

ABM or ABMQ results been much closer to the RKF results, the RKF method

would still have been favored for its much greater ease of implementatior.

C. DISCUSSION

From the results presented, the choice of which numerical integration

algorithm to use for the ray tracing problem was quite easy. The Runge-
Kutta-Fehlberg method was by far the superior method. By employing two

extra equations, compared to the regular RK method, valuable error
information can be obtained and used to easily adjust the integration step

size. It is the ability to adjust the step size that leads to a much greater

efficiency while maintaining the desired accuracy. The RKF algorithm was

very similar to the RK with respect to implementation. It could therefore

easily replace an existing RK code without significant modifications. Both the
RK and RKF methods were very easy to code when compared to the ABM

and ABMQ methods.

The ease of implementation is an important issue since the ray tracing

codes used in this test only provide minimum capabilities. The full ray

tracing code is much more complicated. For example, surface and bottom

interactions must be handled and more than one equation must be integrated

at the same time. The testing was meant to quickly determine the most

suitable numerical integration algorithm for a simple test problem.

24

IV. GAUSSIAN BEAM TRACING

A. BACKGROUND

1. Intensity Calculations

A common method of estimating the intensity along a particular

ray path is to assume that intensity changes are strictly due to spreading loss

and that all acoustic cnergy transmitted between two adjacent rays remains

between those rays. The change in intensity is therefore assumed

proportional to a change in area. The geometry used in this approximation is

illustrated in Figure 4.1. This leads to an equation for the ratio of the

intensities, or the focusing factor f

I(x) x cosoo 1
f =1 - sin0]-J' (4.1)

where I and I(x) represent the intensities at the source (zo,xo) and at a point

(z,x) along the ray path respectively. (Brekhovskikh, 1982 p. 40)

A problem occurs with this approach when rays cross, as they do at

focusing or convergence zones (Clay, 1977, p. 93). As rays converge, the term
(ax/o 0o) approaches zero and the focusing factor approaches infinity. The

envelopes of the focusing points, where f equals infinity, are also referred to

as caustics. In reality, the intensity increases sharply at caustics but

nevertheless, it remains a finite quantity. In order to calculate the focusing

factor in this case, modifications to the ray theory must be made.

25

A formula for the focusing factor on or near a caustic is derived in
Brekhovskikh (1980, Sect. 45). The result, as given in Brekhovskikh (1982, pp.

41-42), is

f =2 5/3 coso. (k sine.)"3 a2X -2/3sino x u2t), (4.2)

(ZoXo)

0 (zi z/

z

Figure 4.1 Ray Geometry For Intensity Calculation

where k. is the wave number (k. =)/c 0) and u(t) is the Airy function. The

argument t of the Airy function is

-2X -1/3
t 2'f' (k1 sin 0)2/ 3 (x -1/),(4.3)

where the plus sign is chosen if (a2 x/aeo 2) < 0 and the minus sign is chosen if
(2 x/ a 0

2) > 0. The condition t < 0 corresponds to the interference between

rays and thus "spatial o3cillations" occur (Brekhovskikh, 1982, p. 42). When
t > 0, no rays are present and the acoustic field decreases rapidly, as it does at

shadow zones. Shadow zones are regions where no rays penetrate; therefore
the intensity is assumed zero. Again this is an incorrect assumption since

26

sound does indeed penetrate shadow zones due to scattering, internal waves
and diffraction effects (Kinsler, 1982, p. 403).

2. Eigenrays

In order to estimate the multipath arrivals at a given receiver
location using ray tracing methods, it is necessary to determine all ray paths

which pass through the receiver location. Rays that travel from the source

and pass through the receiver location are referred to as eigenrays. Since the
ray paths are infinitesimally thin, it is reasonable to set some boundary limits
at the receiver location. That is, if a ray passes within a specified distance (e.g.,
+ 5 m) from the receiver, it is considered an eigenray. Even with boundary

limits set, finding all the eigenrays represents a formidable problem since a
multitude of rays must be traced in order to effectively saturate the receiver

location with rays. If a full three-dimensional ray trace model (i.e., c = c(x,y,z)
and varying bottom bathymetry) is used, the problem becomes very difficult,

computationally intensive and can be prone to errors (Porter, 1987, p. 1355).

B. GAUSSIAN BEAMS

1. General

The Gaussian beam (GB) tracing method involves associating

"...with each ray a beam with a Gaussian intensity profile normal to the ray."

(Porter, 1987, p. 1349) The GB contribution at a particular point can be used to

scale other quantities such as intensity or pressure. The problems associated
with some ray tracing methods, as described above, are not present in the GB
method. The energy at focusing points is finite and shadow zones do contain

some sound energy. The GB method also eliminates the need to perform

eigenray tracing to compute multipath arrivals.

27

2. Gaussian Beam Equations

The GB method basically involves solving a set of ordinary

differential equations along each ray path. These equations, which are

derived from a parabolic equation solution in the vicinity of each ray, are

derived in C(erven" (1982, pp. 109-113) and Porter (1987, pp. 1356-.357). They
are related to the width and curvature of the beam associated with a particular

ray path. The ray path in this case describes the central axis of the associated

beam. These equations are coupled ordinary differential equations and can be

solved numerically, along with the ray equation (Equation 2.9), by the
methods described in Chapter II. The equations, in terms of the arc length (s)

along the ray, are

dq c(s) p(s), (4.4)ds =

and
dp Cnn

ds = - 2(s) q(s), (4.5)

where Cnn is the second derivative of the sound speed, in a direction normal

to the ray. Note that the functions p(s) and q(s) are also complex quantities,

that is, p(s) = ps(s) + ip2(s) and q(s) = qI(s) + iq2(s).

The functions p(s) and q(s) can be related to the beamwidth L(s) and

curvature K(s) as follows

q(s)
L(s) = -2/ (o) Im 1~ J) (4.6)

p q(s) J

K(s) = - c(s) 94 1 q(s) {' (4.7)

28

where Ina) and Re{} denote the imaginary and real parts of the complex
argument. The beamwidth L(s) is actually the effective beam radius, or the

n

Ray Path

Ac

Aen'1 2

Figure 4.2 Gaussian Distribution Normal to Ray Path

width normal to the ray at which the beam amplitude is C' of its maximum
value. (Porter, 1987, p. 1350) This is illustrated in Figure 4.2, which shows the
Gaussian distribution in a direction normal to the ray path (Cerven , 1982,
p. 115).

Once the ray path and the functions p(s) and q(s) are solved, the
beam contribution can be computed at any point (s,n)' as follows

ubeamn)A c(s)) [-io (t(s) + 0.5 {p(s)/q(s} n2)1

(s,n) = A q(s (4.8)

The coordinate (s,n) represents a point in a ray-centered coordinate system.

29

where A is an arbitrary constant, t(s) is the travel time along the ray path and

n is the distance normal to the ray path. The square root of Equation (4.8) is

defined as

fc(s) (_ln(s) /c(s)

xq(s) = x q(s) (4.9)

where in(s) is the number of times that q(s) crosses the imaginary axis. (Porter,

1987, p. 1350)

The expansion of a point source into beams is given in Porter (1987,

p. 1351). This is necessary because a point source is not "beamlike" and must

theretore be approximated by a superposition of beams. The final result of the

point source expansion is the following expression for the beam field

u(s,n) 6n{} (ii/4) q(0) w cos o0j beam=~~) 0 - e U0oj , (4.10)

where 60 is the angular spacing between the beams (rays) and uO0 jbeam is the

beam with an initial Deam angle, or take-off angle, of 0oj. The beam field at a

point (s,n) is, therefore, the sum of all beam contributions at the same point,

multiplied by a beam constant.

T1 'e beam equations so far have been presented in ray-centered

coordinates. In order to avoid conversions from cylindrical to ray-centered

coordinates, an expression for the beam field in cylindrical coordinates is

used. The beam field in cylindrical coordinates u(z,x) is equal to u(s,n) as
given in Equation (4.10), with the exception of uojbeam which is redefined as

uoqcm zx A c(z) 1U(ojbe a m (I,)= () exp [-iwo { t(x) + c tz Az + 0.5 (Az) 2

p(x) 2 Ac

(0.5 1) tr2 +2 C, tztr - CS tz2)], (4.11)
q(x) c(z)

30

where (tz,tr) is the local tangent vector to the ray path and c, and c, are the first

derivatives of the sound speed in directions normal to and tangent to the ray

path, respectively. The local tangent vector (tz,tr) is simply equal to (coso,sine).

The quantity Az is defined as the distance in the z direction between the

receiver depth (Zr) and the ray path at (z,x). (Porter, 1989, p. 2)

3. Initial Conditions

The initial conditions for the ray equation are given by the source

position (zoxo) and initial ray angle 00. The initial conditions for the

functions p(x) and q(x), however, are still an area of current research. Some

authors (C(erven , 1982) suggest choosing initial conditions so as to minimize

the beamwidth at the receiver. This leads to a minimum number of beams

needed to describe the field but requires different initial constants for each

beam, which may invalidate Equation (4.8) (Porter, 1987, p. 1350). Madariaga

(1984) suggests initial conditions that closely follow WKB theory. This

approach, however, has p(x) caustics where the beam reduces to a point

(Madariaga ,1984, p. 596).

The approach used in this thesis is the one suggested by Porter

(1987). They choose initial conditions so that the beams are initially flat

(i.e. K(O) = 0) and in the far field the beams are "space filling." Their initial

conditions are defined as

p() = 1 , and q(0) = ic, (4.12)

where f is defined as

2c,
2

c(80)2 (4.13)

31

4. Beam Contribution Computation

To compute the multipath arrival times and intensities at a given

receiver location, a fan of beams (rays) is traced. The contribution of each

beam at the receiver location is then computed. These beam contributions

can then be used to scale some useful quantity such as the acoustic pressure or
intensity. To determine the beam contribution, it is necessary to first

determine the ray path segments (ds) whose normals bracket the receiver

point at the receiver depth. This concept is illustrated in Figure 4.3.

Receiver (zr, xr)xa / %
z ------------------------.............- o 4........

0+1

(Zi~i, xi+ 1) "
Ray Path

Figure 4.3 Ray Path Segments and Normal Intercepts

Figure 4.3 shows that the ray path segments at (zi,xi) and (zi+l,xi+]),

with angles ei and Oi~j, have normals that bracket the receiver location. To

compute the intercept (Xin t) of these normals and the receiver depth line

(horizontal dashed line in Figure 4.3), the following formula is used

32

Xint= Xi + (Zr - Zi) 4s.1

The ray path segments at (zi,x i) and (zi+l,xi+l), therefore, have corresponding

normal intercepts at Xa and Xb as shown. The following relation yields the

proportional distance of the receiver range (Xr) between the points xa and xb

W = (Xr - Xa)/(Xb - Xa). (4.15)

The contribution at the receiver location can then be approximated by linearly

interpolating the necessary quantities z, p(x), q(x) and t(x) along the ray path

segment, between the points (zi,x i) and (zi+l,xi+l), by the same amount. For

example, the travel time t(x) used in Equation (4.11) would be computed as

t(x) = t(xi) + w{t(xi+1) - t(xi)}. (Porter, 1987, pp. 1352)

To compute the beam field over a large area, a matrix or grid of

receiver points is used. The methods described above are valid except that

there may be several receiver locations bounded by the ray path normals

instead of just one. Also there may be several receiver depths and, therefore,

multiple ray normal intercepts. If a continuous wave (CW) source is

assumed then the contributions at a particular receiver location are summed

over all beams as indicated by Equation (4.10). The results given in Porter

(1987) have been computed in this manner. If an impulsive source is

assumed, then the contributions are normally kept in discrete form, that is,

the contribution information computed at a particular receiver is not

summed so that arrival time information is preserved.

5. Reflection at Boundaries

In Porter (1987) only reflections at the sea surface are considered. A

beam undergoes a change in curvature (K(s)) but no change in width (L(s))

after a surface reflection. The following conditions are given

p'=- p + qN, (4.16)

33

and

q" = q, (4.17)

where the primes denote the quantities after the reflection. The quantity N is

defined as

4 c, (cosO) 2
N= c2 sino ' (4.18)

where c, is the first derivative of the sound speed in the depth direction (c, =

g when c = c(z)). Equations (4.16) and (4.17) are considered valid even at

grazing incidence. Since the quantity

S + N (4.19)
q q

is related to the beam width and curvature (Equations 4.6 and 4.7), Equation

(4.19) indicates that the beam width remains constant and the beam curvature

changes during a surface reflection. In this thesis, Equation (4.19) is also used

for bottom interactions. (Porter, 1987, pp. 1351-1352)

34

V. PARALLEL PROCESSING

A. BACKGROUND

Multiprocessor computing systems can offer many advantages over

conventional uniprocessor system designs, the most obvious being increased

performance. Other benefits include increased reliability, fault tolerance and

scalability - the ability to add performance as required. Performance however

is not simply a linear function of the number of processors in a system. For

example, it is very unlikely that a system with N processors will run N times

faster than a single processor, in solving the same problem. Typically,

multiprocessor system performance or throughput, is limited by many factors

including interconnection and communication schemes. (Stone, 1987,

pp. 278-283)

To solve a problem on a parallel processor architecture first requires

dividing the problem up into areas that can be run concurrently. Once this is

done, the methods of communication and synchronization between

processors must be chosen (Howe, 1987, p. 36). The issue of communication

and synchronization, however, is usually determined by the architecture

itself and cannot be changed.

1. Granularity

A useful term in describing how a problem or application is broken

up into concurrent activities is granularity. Granularity in the context of

parallel processing can be defined as "...an indicator of how much computing

each processor can do independently in relation to the time it must spend

exchanging information with other processors." (Howe, 1987, p. 37) The

granularity of an application is referred to as being either coarse or fine-

grained. A course-grained application requires much more individual and

35

independent computation time at each processor than the time spent

communicating between the processors. A fine-grain application requires less

individual and independent computation time at each processor between

periods of communications between the processors. (Howe, 1987, p.37)

Another way of looking at granularity is to define two quantities R

and C which represent the time taken in running the computational part of

an application and the time taken communicating results between processors,

respectively. A coarse-grained application therefore has a relatively high R/C
ratio while a fine-grained one has a relatively low RIC ratio. (Stone, 1987, pp.

283-284)

2. Communication and Synchronization

Two common methods of processor communications are the

shared memory and message passing approaches. In the shared-memory

approach, data is communicated between processors by storing it in a

common area (memory) where other processors can read it. The message-

passing approach is a poin_-io-point scheme where data generated by a

processor is given a destination (address). The data is then passed or routed to

the destination. The shared memory approach is analogous to a bulletin

board whereas a message-passing approach is analogous to mailing a letter

(Howe, 1987, p. 37).

In order to ensure that data is valid, a method of synchronization

among communicating processors is required. This is accomplished

separately and explicitly in the shared-memory approach through the use of

programming constructs such as semaphores and other locking mechanisms.

It is up to the programmer to use these constructs, for example, to ensure that

data is not read before it is valid. In the message-passing approach

synchronization is handled implicitly. That is, if one processor is waiting to

perform a communication operation with another processor, they must both

be ready before the communication can proceed. This is also referred to as

blocked synchronization. An example of this can happen when both

36

processors are at different points in their programs (e.g., one is still computing
while the other executes a communications statement). The processor that

reaches the communication statement first will be forced to wait until the
other processor reaches the same point in its program. (Howe, 1987, pp. 37-38)

B. T800 TRANSPUTER ARCHITECTURE

The T800 transputer is a specialized microprocessor which integrates a
32-bit processor, a floating-point co-processor, 4Kbytes of static RAM, four
INMOS communication links with a DMA controller, two timers and a
configurable external memory interface on one VLSI device (INMOS, 1987, p.
1). The term transputer is derived from the words transistor and computer

and just as transistors are the building blocks of large and sophisticated

electronic devices, the transputer was designed to be the building block of
distributed computing systems (INMOS, 1986, p. 4). A block diagram of the

T800 internal organization is shown in Figure 5.1.

1. Central Processing Unit

The 32-bit central processing unit (CPU) of the T800 consists of
instruction processing logic, an instruction pointer, a workspace pointer

which points to local variables, an operand register and an evaluation stack
consisting of three registers - A, B and C. All instructions refer to the stack
implicitly. For example, the ADD instruction adds register A and B and stores

the result in register A. As shown in Figure 5.1, the T800 uses three internal

buses - a main 32-bit bidirectional address and data bus used by the CPU and
the floating point unit (FPU) to access internal and external memory and two
unidirectional buses used by the CPU to access the FPU and data links directly

(Electronics, 1986, pp. 54-55). The T800 transputer's instruction set follows the

load-and-store approach which is characteristic of reduced instruction set
computers (RISC) (Gimarc, 1987, pp. 59-63). (INMOS, 1987, pp. 4-5)

37

2. Floating Point Unit

The T800 contains an integral 64-bit FPU which provides single (32

bit) or double (64 bit) arithmetic and which conforms to the ANSI-IEEE

754-1985 floating point standard. The FPU is microcoded and operates

concurrently with, and under control of, the CPU. The FPU evaluation stack

Floating Point Unit

32 32bit

System Processor

Servicesie

Link
ServicesTimers

Link
4KtefaceInterface

Link
Interface

/3 Link 3
SInterface

Event

Figure 5.1 T800 Transputer Block Diagram

consists of three registers AF, BF and CF which can hold either 32- or 64-bit

data. The operation of the FPU evaluation stack is the same as the CPU

evaluation stack in terms of load and store effects. Because the CPU and FPU

work concurrently, it is possible for the CPU to calculate source and

38

destination addresses for the FPU while the FPU is working on previously

supplied data. This is especially important in operations involving arrays of

data. Synchronization points are used in the instruction stream wherever

data needs to be transferred between the CPU and the FPU. The first processor
finished waits for the other to complete its operation; the data is then

transferred and both proceed again concurrently. (INMOS, 1987, p. 17)

The T800 FPU incorporates a fast normalizing shifter because of its
importance in performing floating point arithmetic and because it was

implementable in a reasonable amount of space (silicon). Logic to speed up

multiplication and division operations and support square root calculations

was also added. Standard mathematical functions (e.g., sin, cos) are

implemented using a polynomial approximation method which is slower

than some other methods but does not require additional FPU hardware.

(INMOS, Tech. Note 6, pp. 7-8)

3. Timers, Processes and Process Scheduling

The T800 contains two 32-bit cyclic timers which allow operations

such as reading the time value, delaying execution until a certain time has

been reached and timing out for a specified amount of time. One timer is

high priority and increments every microsecond and the other low priority

timer increments every 64 microseconds.

Processes are one of the fundamental elements of the transputer's

model of concurrent processing - the Communicating Sequential Process

(CSP) model. The CSP model is a predicate calculus developed by C.A.R.

Hoare and has some simple rules

0 data may not shared by processes running concurrently,

0 all data passing is done through communication, and

* all communication is synchronous.

39

The CSP model therefore is basically identical to a message-passing

architecture with blocked synchronization. (Davidson, 1988, pp. 5-7)

Processes start and run until completion; they can communicate

with other processes, spawn other processes and any number of them can be

run in parallel. The transputer contains a microcoded scheduler which

handles the running of processes in parallel. Note that on a single transputer,

processes run in parallel are actually timesliced. The term parallel is still used

in this case because the CSP model does not make any assumptions as to

where processes are physically running (i.e, on which machines). Processes

can be either active (running or waiting on the process queue to run) or

inactive (waiting for communication or until a specified time).

Processes are run at either low or high priority with low priority

processes running only when there are no high priority processes active.

High priority processes are run until completion and are therefore expected to

run only for a short time. Multiple high priority processes are run one after

another until all are done. If no high priority processes are able to run then

the first low priority process on the low priority queue is selected for running.

In order to run several in parallel, a low priority process is given two

timeslices (approximately 1 msec for each timeslice) to run before being

descheduled and put at the end of the low priority queue. Descheduling can

only occur during certain instructions, or descheduling points; thereby

ensuring that expression evaluation within a process is completed first.

Process switching times are typically less than one microsecond. (INMOS,

1987, pp. 6-7)

The CSP model specifies that all communication is synchronous.

Logically this means that a process waiting to communicate with another

process is blocked until the other is ready. At the hardware level, a process

waiting for communication is descheduled until it can proceed with the

communication. Because the CSP model makes no assumptions about the

underlying hardware, processes may be run in parallel on the same processor,

on different processors or a corn.oination of both. In whatever case, the

40

necessary code is the same. Therefore an arbitrarily large system with many
parallel processes can be run on a single transputer or many transputers

without modification. (Davidson, 1988, pp. 5-7)

4. Communication Links

Communication between processes is achieved through the use of
channels and is point-to-point, synchronous and unbuffered. Channels
between two processes running on the same transputer are implemented by a

word in memory. Channels between two processes executing on different

transputers are implemented by physical links. Links consist of two serial,
unidirectional wires that can be connected directly between transputers. Link

interfaces are TTL-compatible and can therefore be connected directly up to

approximately two feet before buffering is required. The link receivers use

phase-locked loops to overcome phase differences between the signals of
different transputers but are sensitive to skew. The links on the T800 can be

configured to run at either 5, 10 or 20 Mbits/sec. All links run at the same
speed except Link 0 which can be set independently. (INMOS, 1987, pp. 42-43)

(INMOS, 1988, p.19)

Data is communicated as a series of bytes, each of which must be
acknowledged before the next is sent. Bytes are sent as 11-bit packets while

acknowledgements consist of a start bit followed by a stop bit. The T800

employs overlapped communications so that an acknowledgement can be
sent as soon as a data packet has been recognized. This acknowledgement can
also be recognized before the the data packet is completely sent, thus allowing

the next data packet to be sent immediately after the last one. The

communication format is shown in Figure 5.2. Data buffering is provided in
the T800 link hardware so that a data rate of 1.74 Mbytes/sec can be achieved
in one direction and 2.35 Mbytes/sec when data is sent in both directions at

once. (INMOS, Tech. Note 6, pp. 12-13)

41

Setting up a link transfer requires approximately 20 cycles (1 gsec).

The T800 uses an internal eight-channel DMA controller so that, once a link

transfer is setup, it can be run autonomously from the processor, only

Input O-
Link

Output 1 I 1 DATA
Link I

time 0.

Figure 5.2 Link Communication Protocol

requiring one read/write cycle every 32-bit word (usually four processor cycles

every 4 g.sec). The T800 also uses a double word buffer. The link hardware

prefetches the next word to be transferred into the second buffer while

outputting from the first. It is possible to run link transfers simultaneously

on all four links without seriously degrading the performance of the CPU.

5. Performance

With the T800 transputer running at a clock speed of 20 MHz, the

CPU is capable of performing 10 million instructions per second (MIPS) and

the FPU capable of 1.5 million floating point operations per second (MFLOPS).

Some performance figures for double-precision Whetstones benchmarks are

given in Table 5.1 (INMOS, Tech. Note 27, p. 10).

42

TABLE 5.1

WHETSTONE BENCHMARKS

Thousands of Double-Precision
System Whetstones per second

T800 (20 MHz) 4000
(using on-chip, 50 r-sec RAM)

MicroVax II 925
(with FPA running MicroVMS)

SUN-3 790
(MC68020 @ 16MHz and MC68881 @ 12.5MHz)

VAX 11/780 715
(8MB memory, FPA, running under UNIX 4.3BSD)

C. PARALLEL ALGORITHMS

1. Main Types

Stone (1987) discusses two basic types of physical computational

models - the particle model and the continuum model. Problems which a:e

ciassed as particle models are typically "full-information functions" (Stone,

1987, p. 196). A full-information function is one in which each output

quantity depends on all of the input quantities. Examples of this are the FFT

and sorting problems. These problems can benefit from parallel processing

but are typically difficult to implement. Problems classed as continuum

models are much better suited to parallel implementation. When discretized,

problems of this form tend to be localized. That is, each point is dependent

only on its own state and the states of its adjacent neighbors. Examples of this

are convective heat flow and fluid flow. (Stone, 1987, pp. 180-196)

In this thesis we are interested in the ocean acoustic ray tracing

problem which can be considered as belonging to the continuum model. In

fact the ray tracing problem can be broken up into parts that are completely

independent of each other thus simplifying the parallel application further.

The parallelization of the ray tracing algorithm is discussed in Chapter VI.

43

2. Processor Workfarm

a. General

A processor "workfarm" is an approach well suited for

implementing some continuum type problems, in particular those that are

coarse-grained. A workfarm basically consists of multiple processors or

workers, and a controller processor which divides the problem into smaller

parts, or work packets, and distributes these work packets. Each worker

processor runs the same code and waits for work packets to be sent from the

controller. Once the work is completed, the results are returned to the

controller and the worker waits for another work packet. Tht efficiency of a

processor workfarm (or any multi-processor system) is dependent on the

utilization of the processors. Efficiency is highest when the idle time is

minimized; that is, the processors are kept as busy as possible doing useful

work.

Note that when data is sent (e.g., work packets, results), it is

usually sent in the form of a message, Messages typically contain address

information, a message header and the actual data associated with that

message. The address, if required, is used to route the message to the correct

processor. The message header indicates what type of message is being sent

and indicates the type, size, etc of data that follows. Messages and message

formats for the ray tracing problem are explained further in Chapter VI.

A typical worker process is shown in Figure 5.3. The outer box

represents the i-th processor. The circles inside the box represent the processes

running in parallel; the arrows represent communication channels and the

direction of the communication. The arrows (channels) leaving the box

represent physical links while the other arrows inside the box represent

internal channels.

44

b. Workfarm Processes

The process called Throughput is used to route messages (data)

either externally or internally. Messages destined for the next processor are
routed through the channel tonext and messages for internal (local) use are
routed through the channel tolocal. The Render process is the process that

actually performs the computational part of the algorithm. It accepts work

packets from channel frominbuffer and outputs results through channel

tooutbuffer. The Feedback process multiplexes messages from external
processors on channel fromnext or internally from the Render process on

channel fromlocal. The messages are then passed up the line on channel

toprev.

c. Buffer Processes

Buffer processes are used between Throughput and Render and

between Render and Feedback. Becat 3e the method of blocked synchronization
is used, these buffers ensure that neither the Throughput or the Feedback

processes will be blocked. This situation could arise for example, if the Render

process was busy performing computations when a new work packet arrived.

Without the buffer process, the process Throughput would be blocked from

sending the work packet to the Render process until it finished its work. This

could then block subsequent messages destined for other processors, thus

degrading the efficiency of the entire system. By using a buffer process, the
Throughput process is always able to "unload" internal messages and continue

routing other messages. The buffer process thus takes over the responsibility

of being blocked until the Render process is ready for more work. The use of
buffering processes can effect the workfarm performance as indicated in

INMOS Tech Note 7.

The buffer processes can also be used to buffer (store) work

packets. By buffering work packets, the idle time of the render process can be

reduced, thus increasing the efficiency. For example, if two buffer processes
are used between the Throughput and Render processes, it would be possible to

45

have three work packets at a given processor, at any one time. The first work
packet would be routed immediately to the Render process for computation.

The second work packet would be routed to the Render process but would only

get as far as the second buffer process, which would be blocked because Render

is busy. The third work packet would then only get as far as the first buffer,
since the second buffer is blocked. Once the Render process finishes its work, it

would accept the work packet stored at the second buffer, thus allowing the

second buffer to accept the work packet from the first. By having work
packets available to the Render process immediately, the idle time normally

spent waiting for a new work packet to arrive from the controller, is reduced.

Processor i

fromprev 1m Thro ughput tonext

requestmore Symbols

toub frrOminbu ter Render 1: prceso
C)Dproce s

tooutbuffer 0 process

Buffer - channel

toprev Feedback fromnext

Figure 5.3 Typical Transputer Workfarm Processes/Channels

Another method of storing multiple work packets, is to store

them at the Throughput process. A new channel, Requestmore is then used by

46

the Render process to indicate that it has finished and request another work
packet. The Throughput process then sends the work packet to the Render

process. This method can eliminate the need for multiple buffers between

the Throughput and Render processes but requires storage for the buffered work

packets, an additional channel and program logic to handle the requests.

d. Controller Process

The controller function can be performed by a processor in the

network (i.e., a transputer) or by a host computer. The controller's task is to

break the problem into work packets and distribute them to the worker
processors. The controller may also be responsible for receiving and

processing the result packets sent by the workers (e.g., graphically displaying

results). Work packets can be either addressed or not. If they are addressed,

then they are routed to a specific worker processor and, if not, they are

handled by the first worker who receives the work packet and is able to

handle more work. If n work packets can be buffered by each of the m worker

processors then the controller starts by distributing nxm work packets to the

workers. From then on, new work packets are usually not sent out until a
resuit packet has been received. In this way only nxm work packets are out on

the worker network at any given time.

e. Process Priority

Another important aspect of the workfarm is the process

priority. As previously stated, processes can be run at either high or low

priority with high priority processes running until completion or until

blocked. It is a common misconception to think that the computational part

of the algorithm should run at high priority and the communication (routing
and buffering processes) should be run at low priority. This type of setup
however actually leads to decreased performance. The workfarm shculd be

set up so that all communications are run at high priority and computations

run at low priority. If the computational part of the algorithm were run at

high priority, it would run until completion. Meanwhile, any

communication or routing performed at low priority would be completely

47

halted until the computational part was done. This could mean that work

destined for other processors would not get through and processors would be

idle. Running all communication at high priority ensures that data is never

blocked, but rather routed immediately. Since the workfarm approach is best

suited to course grain problems, the amount of time required for

communication is minimal anyway, compared to the computation time

required. Also since communication links, once setup, can run

autonomously from the CPU, the computations can be restarted while data is

transferred by the link engines. (INMOS, Tech. Note 17, pp. 13-20)

48

VI. IMPLEMENTATION

A. DEVELOPMENT SYSTEM

1. Hardware

The hardware used for this project included a Macintosh II, a Levco
TransLink II transputer motherboard and two TransLink modules. The
TransLink II motherboard is a NuBus compatible card that can support up to
four TransLink modules. The Macintosh II can hold up to five TransLink II
cards for a total of 20 .transputers. Each TransLink module consisted of one

T800 transputer and 1 MByte of RAM.

2. Software Tools

a. Macintosh

All Macintosh software was written using Symantec's
Think C 4.0 development system. Think incorporates a fast compiler,
linker, text editor, project organizer and a source level debugger in an
integrated environment. Standard ANSI C libraries (e.g., stdio, math, etc.) are

included as well as an object-oriented class library for creating Macintosh

programs.

b. Transputer

A variety of programming languages and software

development systems are currently available for the transputer including C,
Pascal, Fortran, or are soon to be released, such as Ada. Of special note is

Occam which is a high level language designed specifically to express
concurrent algorithms and their implementations on a parallel processing
network efficiently and easily. Occam, which was introduced in 1982, is based

49

on the concepts introduced by David May in EPL (Experimental Programming

Language) and C.A.R. Hoare in CSP. The development of the transputer was

closely linked to Occam and in essence represents an Occam architectural

model since many of Occam's constructs are implemented directly in

hardware. (occamo 2 Reference Manual, Preface)

Software for the transputer was written using Logical Systems

Transputer Toolset which includes the software tools necessary to write C

programs for the transputer. The tools include a C preprocessor, a C compiler,

an assembler, linker and a file librarian. The Transputer Toolset runs under

the Macintosh Programmer's Workshop (MPW) shell environment. The C
language was chosen over Occam so that all software could be written in one

language. This made it possible to write and validate algorithms on the

Macintosh before they were ported over and run on the transputer. This was

important since it is especially hard to debug parallel software running on a

transputer.

B. RAY TRACER

1. Numerical Integration

As discussed in Chapter III, the numerical integration method

chosen to solve the ray equation was the Runge-Kutta-Fehlberg method. The
algorithm was implemented as presented, but was used to solve not only

Equations (2.16) and (2.17), but also the Gaussian beam parameters given by
Equations (4.4) and (4.5). All integration was performed with respect to the

differential change in range (dx), therefore Equations (4.4) and (4.5) were

modified as follows:

dq c(z) p(x) (6.1)
dx cos '

and
dp Cnn q(x). (6.2)
dx c2(z) cose

50

Since the functions p(x) and q(x) are complex quantities, they were also
separated into their real and imaginary parts which were solved separately.
This meant that a total of six equations were numerically integrated

simultaneously.

Two variables, scaleMax and scaleMin, were used to limit the
amount by which the step size h could be scaled after each step. These values

were typically set to 2.0 and 0.1 respectively. This meant that the step could
never be increased by more than twice its previous size or reduced by more

than a factor of 0.1, at any one time.

2. Turning Points

When the argument inside the square root in Equation (2.16)
approaches zero, this indicates that the ray is approaching a turning point. As

the ray turns and changes direction, this argument will ideally equal zero and
then begin to increase positively again. However, when solving this equation

numerically, it is possible to cause this argument to go negative or

equivalently, to step the ray path beyond the turning point. When this

happens the algorithm reduces the step size by one-half, the variable scaleMax

is set to one, thus preventing any further step size increase, and the

integration step is started again. This process is repeated until the step size is

reduced to a value less than the starting step size hstart. In this way, the

turning point is approached gradually.

Once the step size is reduced less than hstart, an approximation is

made to solve for the turning point. The approximation assumes that the

sound speed profile is linear at this point and the ray path is defined by the arc
of a circle, as discussed in Chapter II. The geometry used for this
approximation is shown in Figure 6.1. The point zi represents the dep'-h

value where the approximation is started and the angle of the ray segment at

this point is 0. By solving the relation

c(zi+l) = c(zi) + Azg (6.3)

51

for Az, where Az = zi+1 - zi, the value of zi1 (or equivalently Ztp) can be

computed. Similarly, the relation

1
Ax = - (sin 0i - sin i1) (6.4)ag

is used to compute the corresponding change in range Ax. (Clay, 1977,

pp. 86-87)

The angle at the turning point is zero. The ray path is then stepped
past the turning point to zi+ 2. The depth Zi+2 is set equal to zi, the new angle is

equal to e and the range value is incremented by Ax. At this point the

numerical integration is restarted using the starting step size hstart. The

parameter hstart was set to 25 m which meant that the corresponding change
in depth was very small. Therefore the linear sound speed profile

approximation is only used very close to the actual turning point.

Z tp = Zi+1

71 Zi+ 2

2A 0

Figure 6.1 Turning Point Geometry

3. Surface Reflections

After each integration step the depth value of the new ray path

point is tested to see if it is less than zero. If it is, a flag is set to indicate that a

surface reflection has been encountered. The step size is then reduced in the

same manner described above, and the integration step is repeated. Once

52

again, when the step size is reduced less than hstart, the linear sound speed

profile approximation is made. The geometry used is shown in Figure 6.2.
The ray path is first stepped from zi to the surface (Zr = 0). The angle at the

point of reflection (Or) is computed using Snell's law and the resultant change

in range Ax is computed using Equation (6.4). The ray is then stepped to zi+2 =

zi where the new angle is equal to the angle 0 at zi.

4. Bottom Reflections

Bottom reflections are handled in a manner similar to the surface

reflections. After each step the depth value of the new ray path point is also

Zr = Z~

Surface

AZ

Z Zi+2
- x --- -- Ax - - - - - -

Figure 6.2 Surface Reflection Geometry

checked against the bottom depth at that point. If the ray path's depth value is

greater than the bottom value, a flag is set indicating that a bottom reflection

has occured. The integration step is then repeated with the step size reduced

by one-half. This process is repeated until the step size decreases below hstart
at which point the ray is stepped into the bottom reflection point using the

linear sound speed profile approximation method. A bottom tolerance value

is used to determine how close the ray is stepped towards the bottom. The

bottom depth is provided by a separate function that uses a cubic spline to

53

interpolate bottom bathymetry data. This function takes a range value

argument and returns the depth and gradient of the bottom, at that range.

Once the ray path is stepped to the bottom reflection point, it is then

reflected out from the bottom. The gradient of the bottom is used to

determine the new ray angle and, after a bottom reflection, a new value of

Snell's constant (a) must be computed. The geometry used in computing the

angle of the reflected ray path is shown in Figure 6.3. The incoming ray has

an incident angle b with respect to the bottom. The reflected ray will also

leave with an angle of b when measured with respect to the bottom.

However, since all angles are computed with respect to the horizontal this

approach must be modified. The incoming ray now has an incident angle d

and the bottom, at the point of reflection, has an angle a with respect to the

horizontal. As shown, the reflected ray will have an angle of c which is equal

to a+b. The angle b however is equal to a+d; therefore, angle c is equal to 2a+d.
The angle a of the bottom can be computed from the gradient (gb) and is equal

to tan-(gb).

reflected ray

incident ray

Figure 6.3 Bottom Reflection Geometry

It should be noted that there may be cases where the sound speed is
required at depths below its maximum tabulated depth. In Is case the

sound speed is linearly interpolated by the algorithm using a constant

gradient of 0.016 s- 1. This gradient represents the dependence of the sound

speed on depth in isohaline and isothermal water (Clay, 1977, p. 90). If this
approximation is not accurate enough, then the sound speed profile should

54

be tabulated to the maximum depth of the bottom. A similar situation arises
when the bottom bathymetry is not tabulated out to the desired receiver
range. In this case, the bottom, past the last tabulated range value, is assumed
flat at a depth equal to the last tabulated depth value. The bottom gradient in

this case is equal to zero.

C. GAUSSIAN BEAMS

The implementation of the Gaussian beam contributions was fairly
straightforward. A copy of the program used by Porter and Bucker, written in
Fortran 77, was provided and used as the basis for the implementation in this
thesis. The most notable problems occurred in using complex variables in C.
Routines to handle complex math had to be written and complex-valued

formulas had to be broken up into their real and imaginary components.

Most of the Gaussian beam algorithm is performed after the ray path has
been computed. The following portion of Equation (4.11), however, can be
computed at the same time as the ray path

y = (0.5 q(x) t 2 2 Cn zr cs t z 2) " (6.5)
(05q(x) tr + cz) c(z),

In order to compute the Gaussian beam contribution at a particular receiver
location, it is convenient to store the ray path positions, angles, travel times
and y values at all points along the ray. In this way, the ray path normals at
each point of the ray are checked to see if they bracket the receiver location. If
so, the corresponding angle, travel time and y values are readily available for
use in computing the beam contribution.

D. PARALLEL PROCESSING

1. Parallelization of Ray Tracer

It was stated in Chapter V that the first step in parallelizing a

problem is to determine which parts of the problem can be solved

55

concurrently. In the case of acoustic ray tracing, each ray path calculation is

independent of all others. Suitable work packets can therefore be formed

using individual ray path calculations as the atomic element. That is, work

packets can be made up of one or multiple ray path calculations. If a work

packet consists of one ray path calculation, then all that is needed to describe it

is the initial ray angle. If a work packet is made up of multiple, equally spaced

ray path calculations, then an upper and lower angle and an angle increment

(80) are required. Once the individual ray paths have been determined, the

Gaussian beam contributions at particular receiver locations can then be

summed from the individual ray contributions at the same locations.

In this thesis, work packets are made up of a single ray path

calculation and are addressed to a specific processor. A listing of the ray

tracing algorithm is given in Appendix A. Note that this listing is for the

transputer code and therefore contains the workfarm routines and the ray

tracing algorithm.

2. Message Formats

In order to send information to and receive results from the

transputers, a number of message formats were devised. Most messages

consist of a message header, a processor identification number (address), the

length of the message and the associated data. The message header indicates

what message is being sent and the processor identification number indicates

what processor the message is intended for. The length of the message is the

length, in bytes, of the data to follow. The data associated with a message is, of

course, dependent on the type of message. Separate messages were used to

send sound speed profile data, bottom bathymetry data and other parameters

(e.g., integration scale parameters) to the transputers. A listing of the message

numbers used is also given in Appendix A.

56

E. HOST

1. Macintosh Programming

The Macintosh computer, first introduced in 1984, has become

known for its ease of use and its unique and consistent graphicai user

interface. Most of the software required to support the user interface is

contained in ROM (Read Only Memory), which is referred to as the "toolbox".
The toolbox contains routines for such things as screen drawing, windows,
controls, file manipulation and memory management. The specifications
and descriptions of these routines are given in the five volume reference set

"Inside Macintosh." By using the toolbox routines where applicable, a

consistent user interface can be written for any application. This means that
many standard op.rations are performed in the same manner in all

application programs (e.g., saving and printing files) and, as the Macintosh
products evolve, applications remain compatible.

Although the end user benefits from the Macintosh software

design, programming the Macintosh is a difficult task. For reasons of brevity,
the software written as part of the Macintosh host application for this thesis,
is not given. However, the basic structure of the main event loop of the host
program is given in Appendix B. The software written for the Macintosh
includes a version of the ray tracer algorithm to be used in the event that the

program is run on a Macintosh without transputers installed.

2. Transputer Interface

All data sent to and received from the transputers is sent as a series

of bytes. This is handled by low-level device handling routines on the
Macintosh and channel communication routines on the transputer. The

ordering of the bytes is reversed between the Macintosh and the transputer;
however, the actual byte reversal is handled in hardware on the TransLink

card and is transparent to the programmer. The TransLink system is designed

57

so that the Macintosh-to-transputer interface is logically seen as a transputer

channel. The Macintosh, therefore, can only communicate directly with one

transputer on each TransLink card.

F. OVERALL ALGORITHM SETUP

This section gives a brief description of the ray tracing algorithm. When

the program is first started, the host program looks for and boots the

transputers. Once the user has set various parameters (e.g., sound speed

profile data file, ray angle limits, etc.), and has selected the ray trace command,

a number of data structures are sent to the transputers. These include the

sound speed profile data, the bottom bathymetry data, the integration

parameters and other data requirtd to carry out the ray path calculations. The

host program then sends the work packets to the transputers, re'-eives results

from them and plots the results on the screen as they are received, until all

rays have been traced. If the user chooses to perform another ray trace,

perhaps after changing some parameters, the process described above, of

sending the intial data structures and work packets, is simply repeated. In the

case that no transputers are installed, the program will still function but all

computations will be done on the Macintosh II.

58

VII. RESULTS

A. GENERAL

This chapter presents some results using the ray tracing and Gaussian

beam algorithms developed for this thesis and results from the optimization

of the parallel processing setup. The first of three example ray traces

compares an analytic ray path with that obtained using the algorithm, the

second example demonstrates ray interactions with a sloping bottom profile

and the third example traces rays for the Munk canonical deep-water sound

speed profile. Two Gaussian beam examples, based on the Munk canonical

deep-water sound speed profile, are presented as well as plots of the

behaviour of the functions used in computing the Gaussian beams. Finally

the results of the optimization of the parallel processing scheme are

presented.

B. RAY TRACING

1. Comparison with Analytic Example

To demonstrate the accuracy of the ray tracing code, a simple

example is presented that can be verified by comparing it to an analytic

solution. A linear, upward-refracting sound speed profile was chosen for this

example and is shown in Figure 7.1. Because the profile is linear, the ray path

follows the arc of a circle whose radius is given by Equation (2.21). To

simplify the example further, an initial ray angle of 00 and a source depth of

1000 m was also chosen. The analytic solution yields the following results

Snell's constant = a = 6.83 x 10-4 s/m

59

and

radius - 1-_9.16 x 104 m.ag

The horizontal di:.tance travelled by the ray in any layer is given by

(Clay, 1977, p. 87)

xf - xi = (radius) (sin oi - sin of). (7.1)

Note that Equation (7.1) has been modified to take into account the fact that

c [m/sl
1445 1455 1465 1475 1485
0 --

250

500

750

1000

1250

1500

1750

2000
z(mj

Figure 7.1 Linear, Upward-Refracting Sound Speed Profile

60

all angles used for the ray tracing code are measured with respect to the
horizontal and not the vertical as in the reference. Solution of Equation (7.1),
with xi = 0 m (i.e. at the source) and xf the range to the first surface reflection,

yields

xf = 1.3 4 9 5 x 104 m.

The quantity xf is also the distance between the sucessive reflection points and

turning points, as labelled in the ray path plot of Figure 7.2 (i.e. x2 - x1 is equal

to x5 - x4, etc.).

A comparison of the results between the analytic and numerical
solutions is given in Table 7.1. Note that the numerical solution was

computed using an integration tolerance of 1 x 10- .

TABLE 7.1

ANALYTIC VERSUS NUMERICAL SOLUTION

Range Analytic Solution Numerical Solution
Poini [X 10 4 ml [x 10 4 ml

X1 1.3495 1.3495
X2 2.6991 2.6990
X3 4.0486 4.0486
X4 5.3981 5.3981
X5 6.7477 6.7476
X6 8.0972 8.0971
X7 9.4468 9.4466

As can be seen from these results, the ray tracing code is very accurate -

differing by a maximum of two meters in the total 100 km range. A smaller

integration tolerance would have yielded even higher accuracy.

61

Oc

W))

o I__ _ _ _

Fiue72 EapeRyPT

I62

2. Example with Bottom Bathymetry

The next example demonstrates the ability of the ray tracing code to
handle bottom bathymetry data and ray intersections with the bottom. As

shown in Figure 7.3, a linear, downward-refracting sound speed profile was
chosen so that all rays would be refracted into the bottom.

c (m/s)
14.45 1460 1475 1490 1505
0

500

1000

1500-

20009

2500

3000

3500

4000
z(m]

Figure 7.3 Linear, Downward-Refracting Sound Speed Profile

The resultant ray plot for a source depth of 3000 m, initial ray angle

of -5' and an upward-sloping bottom profile is shown in Figure 7.4. The ray
path exhibits behavior as would be expected for rays travelling up a sloped

63

bottom. As the ray propagates up the slope, successive reflections (both

bottom and surface reflections) occur closer and closer together. This is due to

the fact that when the ray reflects off the bottom, its reflection angle (with

respect to the horizontal) is increased by twice the slope of the bottom at the

point of reflection (see Figure 6.3). This causes the ray path to 'bunch-up' as it

travels up the slope. Under certain conditions, this effect can even cause the

ray path to go vertical and then head back towards the source.

64

o

S-

UE

Figure 7.4 Ray Plot With Bottom Interactions

65

3. Munk Profile Example

This example uses a canonical sound speed profile given in

Porter (1987), which is referred to as Munk's canonical deep-water sound

speed profile. The profile is defined by the equation

c(z) = 1500 11.0 + 0.00737[u - 1 + eU, z _ 5000m (7.2)

where

u = 2(z - 1300)/1300. (7.3)

A plot of this sound speed profile is given in Figure 7.5 and a ray trace plot

using this profile is given in Figure 7.6. Note that in this sound speed profile

plot the box symbols represent tabulated or input values. The rays are traced

from +140 to -14' with an angular spacing of 0.50 between rays from a source at
1000 m depth. This plot compares favorably to that presented in Porter (1987)

and is used in subsequent discussions about Gaussian beam results.

C. GAUSSIAN BEAMS

This section provides some preliminary results obtained using the

Gaussian beam algorithm. The results are for single receiver points only
(i.e. not total field calculations) and a source frequency of 500 Hz. The ray

tracing conditions (i.e. sound speed profile, etc.) are those presented above for

the Munk profile example. Note that the term Gaussian beam contribution

used in subsequent discussions refers to the fact that at a given receiver

location, each ray will contribute to the acoustic field.

1. Example 1 - Receiver at Range 68 km, Depth 1500 m

For the first example, Gaussian beam contributions were computed

for a receiver location at a range of 68 km and a depth of 1500 m. This

receiver location was positioned away from apparent shadow zones and

66

caustics to provide a more simplified example. The Gaussian beam

contributions versus the initial ray angle are shown in Figure 7.7.

c [m/s]
1500 1510 1520 1530 1540 1550
0

500

1000"

1500-

2000-

2500-

3000"

3500

4000

4500

z m]

Figure 7.5 Munk Canonical Deep-Water Sound Speed Profile

As can be seen from Figure 7.7 a peak occurs at 2.5' (= 0.04 radians)

and dropouts occur at 13' (= 0.23 radians) and at -10' (= -0.17 radians). A plot

of these three ray paths is given in Figure 7.8.

67

Figure 7.6 Munk Profile Ray Plot

68

2.000e-4

1.500e-4 -

0

L) 1.000e-4 0

E

o o

0.000e+0-°
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Initial Ray Angle

Figure 7.7 Gaussian Beam Contributions vs. Initial Ray Angle

A plot of the beamwidth or effective beam radius Lx, as given in

Equation (4.6), provides an explanation for the peak and dropout locations.

Figure 7.9 below illustrates the behaviour of the Gaussian beam field as a
function of the ray path. Figure 7.9 shows a 0' ray path plot with a Gaussian

beam field superimposed upon it, reflecting the results of Figure 2 in Porter,
1989. The shaded areas depict the Gaussian beam contribution with the

darker areas representing the highest values (i.e. higher intensity, lower
transmission loss, etc.). The purpose of this figure is to simply i'lustrate the

focusing and de-focusing effects of the Gaussian beam as a function of the ray

path and its effect on contributions at the receiver location. It can be seen in
Figure 7.9 that although the ray path passes closer to receiver 2, it would have

69

C4

NC

Fiue78EapeRyPo

N7

-8200
Reeie ReeveI

-100R c i e 2............ .-1200

-1800 "

.:..::.:.

::

-14 00==

-1800 :'''..

Ray ath

0 20000 40000 60000 80000

x [ml

Figure 7.9 Example Gaussian Beam Field

a larger Gaussian beam contribution at receiver 1. Therefore receiver 2 is too

close to a focusing zone to see any significant contribution from the ray.

It is this focusing and de-focusing effect that is the reason for the

dropouts in the Gaussian beam contribution of Figure 7.7. The dropouts at
-10' and 13 0 are caused by the fact that the corresponding Gaussian beams are

focused and have small beamwidths at the receiver range. The beamwidth of
the 2.50 ray is also focused at the receiver location, however not as much as

the -10' and 130 rays. This is displayed further in Figures 7.10 through 7.12

which plot the beamwidth L(x) as a function of range (x) for the 130, 2.50 and
-10' ray paths respectively.

71

20000 --------_ _

S13' Ray

150(o)

0 0

0 0

o

5000 00 0

0

0 200X) 4(X)0 6CXX) 800CN) 100000

x rn]

Figure 7.10 L(x) vs. x for 13' Ray

72

500A) _

4000

4000E oo

1 0

00

3000 o0o0

0 200(X) 40000 6(X XX) 800)(X) 10))(0(0

x [m]

Figure 7.11 L(x) vs. x for 2.5' Ray

73

25XX)

200A)

I5(X)

5000

50

000 o o

0 20000 400(X 60WO) 80XX 1 00()0(

x[mI

Figure 7.12 LMx) vs. x for -10' Ray

2. Example 2 - 5' Ray Path

The second example presented takes a reverse approach in order to

confirm the ideas presented above. In this example an arbitrary ray path

(other than 13', 2.50 or -10') was chosen and a plot of the beamwidth versus

the range was made for that ray path. A range at which the beam focused was

chosen and the Gaussian beam contributions were then calculated at this

range value to see if a dropout existed corresponding to the ray angle.

74

The ray angle chosen was 50 and a plot of the beamwidth versus the
range for this ray is shown in Figure 7.13. The ray focuses at approximately

15.7 km, therefore this range was chosen as a receiver point. Once again the
receiver was located at 1500 m depth. A plot of the ray path and receiver

location is shown in figure 7.14. A plot of the Gaussian beam contributions at

the receiver location is shown in Figure 7.15. It is clear from Figure 7.15 that a

dropout occurs at the chosen ray of 50 as expected.

3000 -
i 50 Ray

2500

2000

15001000 -

0 5000 10(X)) 15X) 20W 250W

X [m]

Figure 7.13 L(x) vs. x for 50 Ray

775

N

7

In

Figure 7.14 5' Ray Path Plot

76

3. Behaviour Gf p(x) and q(x)

As stated previously in Chapter 4, the quantities p(x) and q(x) (and

similarly p(s) and q(s)) are derived from a parabolic equation solution in the
vicinity of each ray. They are related to the beamwidth L(x) and curvature

K(x) of the beam associated with a particular ray path and are given, in ray

3.Oe-4

2.5e-4

- 2.0,-4

E" ~ - o 00.2 1.5eA

5.0e--;

0.0e+0

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Initial Ray Angle

Figure 7.15 Gaussian Beam Contributions at x = 16.5 kin, z = 1500 in

centered coordinates, in Equations (4.6) and (4.7). The quantities p(x) and q(x)

are solved along with the ray equation and are complex functions. Plots of

p(x) and q(x) as a function of range are given below in Figures 7.16 and 7.17

respectively for the 2.50 ray. These plots are provided for illustrative purposes

since p(x) and q(x) are such fundamental quantities in computing the

Gaussian beams. For additional information on the derivation of p(x) and
see Appendix A of Porter, 1987.

77

2.0 - __ 6.0c-4

Sreal

-imag

4.0e-4

1.0 , /2.Oe-4

1.0~-

0' 0 -2.0e-4

0.0 4.0e-4

$ -6.0c-4

4.0 -, I-8.0c-4

0 20000 40000 60000 80000 I 00(X)

Figure 7.16 p(x) vs x for 2.50 Ray

78

le+7 1 1e+4

dOo # [- - real I
i - imag

t 5e+3

Oe+O I /
cr -5e+6 / I Oe+OI-

-le+7

S-5e-3
-2e+7 7/ . 0

-2e+7 , -le+4

0 2000 40000 60000 80000 100000

x [m]

Figure 7.17 q(x) vs x for 2.5' Ray

D. PARALLEL PROCESSING

1. General

The parallelization of the ray tracing and Gaussian beam algorithms

involved work in many areas including the design and implementation of

the workfarm process structure and the implementation of the workfarm and

host interface routines. This section presents the results of that effort and

results of techniques for optimizing the parallel processing setup. These

optimization techniques focused on the use of on-chip RAM and did not

79

involve optimization beyond the intended workfarm concept. Any

optimization of the parallel-processor-based Gaussian beam tracing algorithm

by using a method other than the parallel processing workfarm is beyond the

scope of this thesis and is one of the recommended areas of future work.

2. General Observations

a. Data Reporting

One concern in designing the parallel algorithms was the

reporting of data from the transputer network back to the Macintosh II host.

Once the transputers had finished a ray path calculation (i.e. the entire ray

path) it had to be displayed on the screen and therefore, the ray path data had

to be returned to the host. However, this proved to a lengthy process in

which any performance gains obtained by using the transputers was degraded

in data transfer. Performance was reduced further by the host having to

convert ray path data into screen coordinates for plotting. An alternative

solution was used whereby the transputer first converted the ray path data

into Macintosh screen coordinates (i.e. x and y values). This not only reduced

the size of the data that had to be transferred but also reduced the processor

workload on the Macintosh II host.

b. ProcAlt Function

Another problem arose in returning results from the

transputers to the host. This was caused at the feedback process and involved

the alternation between the two channels fromlocal and fromnext (see Figure

5.3). Recall that the channel fromlocal accepts internal data and thE channel

fromnext accepts data from the next transputer in the network. The parallel C

function ProcAlt is used to alternate between input on multiple channels. Its

usage and syntax are given in the following example:

idx = ProcAlt(fromlocal,fromnext,0);

80

In the example, the function ProcAlt checks for any input ready on either of
the two channels fromlocal or fromnext. If input is ready on fromlocal it returns

a value of zero and if it is ready on fromnext it returns a value of one. If

neither channel is ready it returns a value of -1. The problem arises when

both channels have data ready simultaneously which was the usual case. The
function ProcAlt tends to favor the channel appearing first in the argument

list, in this case fromlocal. This meant that any transputers further along in

the network would be blocked from returning their results and from doing
any more work. In fact, only the first transputer would end up doing any

work, thus defeating the purpose of the parallel workfarm.

The solution to this problem was to simply toggle between two

separate calls to the ProcAlt function on successive passes through the feedback

process code. The calls were the same except that the channel arguments

were reversed in order between the two statements. Therefore the ProcAlt

function call would still favor the channel appearing first in the argument list

but would be forced to alternate between them properly.

c. Debugging

Debugging software that runs on a parallel processor workfarm

is a difficult process for two main reasons. The first reason is the fact that

communications between the host and the network of transputers is
performed over a single serial link. This means that any debugging

information obtained is usually done using special message formats designed

for debugging. It is therefore important to design message formats, etc. to be
flexible from the start and with debugging in mind. Some transputer

network analyzers do exist but were not available for this thesis work. The

second problem also arises from the fact that all inter-transputer

communication is performed over serial links and is block-synchronized. As

stated previously in Chapter 5, block synchronization means that

communication is not performed until both channels are ready. This method

of synchronization can lead to a condition known as deadlock whereby one
process may be waiting to perform communication with another, but is

81

unable to do so. This process in turn causes another to wait for

communication (i.e. block). This condition is repeated throughout until the

entire network is in a state of deadlock. Deadlock conditions can either be

difficult or easy to solve and is not a problem found in conventional

sequential algorithms.

d. Work Packet Buffering

As stated previously in Chapter 5, work packets can be buffered

in one of two ways. In this thesis buffer processes were used between the

throughput and render and between the render and feedback processes. This

eliminated both the need to buffer work packets in the throughput process and

the need for a requestmore channel. Different numbers of b,:ffer processes

were tried, varying between one and three. In this particular setup, no

noticeable differences were observed when the number of buffers was varied.

That is, little time was spent waiting for more work to arrive. This is due to

the fact that the granularity of the problem was relatively large and the

amount of time spent communicating was small in comparison to

computational time.

3. Results of Optimization

One of the most effective optimization methods is to maximize the

use of the on-chip RAM of the transputer. Although only 4 KBytes of on-chip

RAM are available, its 50 nsec access time makes it three times faster than the

off-chip RAM (150 nsec). It is therefore best to utilize it whenever possible.

Three different memory allocation arrangements were tried. The first was to

use c'f-chip RAM exclusively. The second arrangement used on-chip RAM

for the stack space of the Render process and the third involved placing certain

data structures (variables) and frequently-called routines in the on-chip RAM.

The results are given in Figure 7.18. This figure shows the time required to

compute each of 11 ray paths, from 5' to -5' with an angular spacing of 1'

between rays. The corresponding results for the Macintosh II are also shown.

82

It can be seen from Figure 7.18 that the use of on-chip RAM for the

render process stack space gave the best results - at least twice as fast as the

Macintosh II. Trying to place some data and frequently called functions in the

on-chip RAM seemed to have little effect in speeding up th', program. Some

performance figures given for the T800 claim that it can perform six times

faster than the Motorola 68020/68881 combination, as found in the

Macintosh II (Electronics, 1986, p. 52). These figures are usually determined by

using program code that is run completely in the T800's on-chip RAM, which

has an access time of 50 nsec. In our case, the results for the program run

completely in off-chip RAM (150 nsec cycle time) are not quite twice as fast as

the Macintosh II. Therefore, assuming that if the program could run

completely using on-chip RAM, it would run between four and six times as

fast as the Macintosh II version.

The fact that only a factor of two performance gain is realized in any

one transputer over the Macintosh II does not seem significant at first. It

must be realized however that by using the transputer workfarm, this

performance gain can be further multiplied by the number of transputers in

the network. Therefore with 20 transputers, a speedup of approximately 40

can be achieved. Of course an upper limit exists on the number of transputers

that can be added before other problems, such as communication throughput,

actually degrade performance. This upper limit could not be found since

additional transputer resources were not available for this thesis.

83

- Vars/Code on-chip

3.00 oC Stack off -chip ____

-h----- Stack on-chip

2.75 ------ Macintosh 11

2.50

2.25

Time [sec]
2.00

1.5o

1.25

1.00
50 40 30 20 10 00 -10 -20 -30 .40 -50

Rays

Figure 7.18 Timing Results

84

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis has attempted to develop a ray tracing model suitable for
predicting multipath arrivals and associated information such as travel time
and amplitude, for use in ocean acoustic tomography problems.

The ray tracing code developed in this thesis uses the Runge-Kutta-
Fehlberg method to integrate the differential equations used in determining

the ray paths and associated Gaussian beams. This numerical integration
method provides flexibility, accuracy and is more efficient than some other
methods. The resultant ray tracing algorithm is also flexible and very

accurate.

The method of Gaussian beams is used to estimate the arrival
amplitudes at a particular receiver location. This information can be used to

scale and estimate other useful quantities such as the pressure or intensitv.

This thesis has also shown that it is relatively easy to take advantage of
parallel processing without having to buy expensive and specialized

equipment and software development tools. The transputer offers a
relatively cheap and efficient solution to parallel processing without

requiring large amounts of space (20 in one Macintosh II).

85

B. RECOMMENDATIONS

This section lists some areas and topics related to this thesis that are

suitable for further research.

1. Ray Tracing

The model could be made into a full, three-dimensional model

The ray tracing could take into account the range and azimutha' dependency

of the sound speed and the bottom could be described using three

dimensional bathymetry. In order to accomplish this, new equations are

required for defining the ray path and the Gaussian beams. Also, a suitable

method for interpolating the sound speed profile and bottom bathymetry data

in three-dimensions is requir2d. In addition to the more complex bottom

bathymetry, some form of bottom loss model could also be added to improve

the accuracy of the model.

2. Parallel Processing

Only two transputers were used in this thesis to i:i plement the

parallel processing workfarm. Additional transputer resources ire ava.ilable

at the Naval Postgraduate SchoK' and should be used to ca,_termine at what

point the workfarm speedup peaks (i.e., how many processor,;). Also, if the

model is made more complex (e.g. three-dimensional), it may be necessarv to

break the ray tracing problem into different parts that can be run concurrently.

For example, due to the large amount of information that may be reqired in

a three-dimensional problem (sound speed profiles, bthy,.ietry data), it may

be more efficient for one processor to store this information. Other processorni

would then request (via messages) sound speed and bottom bathymetr-

information from this processor.

86

3. Miscellaneous

Although the Gaussian beam contributions were set up to retain

travel time information (i.e. an impulsive type sour-e) the ability to compute

the total acoustic field, could be added. Also, v,,th the Macintosh II, the

addition of color plots would be useful in displaying this field.

87

APPENDIX A

TRANSPUTER SOFTWARE ROUTINES

This appendix gives a brief descrip ion and listing of the software written

to run on the transputer. This includes the routines used to implement the

workfarm and the routines used to perform the ray path and Gaussian beam

calculations.

A. WORKFARM

The routines used to provide the workfarm capabilities are implemented

as discussed in Chapter VI. One notable exception is the use of the buffer

processes. Instead of one buffer process on either side of the render process, a

total of six are used. This still allows work packets to be buffered in a different

fashion. Variables to store extra work packets are not required in the

throughput process and the channel requestmore is not required.

B. RAY TRACER

1. Numerical Integration

a. RKF4

This routine represents the core of the ray tracing algorithm. It

is used to perform the Runge-Kutta-Fehlberg numerical integration. This

routine calls reducestep if a turning point or other boundary interaction is

encountered.

88

b. reducestep

This routine is called whenever a turning point, surface

reflection or bottom reflection is encountered. This routine simply decreases

the step size and ensures that the integration step cannot increase further

before returning. If the step size is reduced below hstart, this routine then

calls turnpoint.

2. Turning Points

a. turnpoint

This routine is called whenever a turning point, surface
reflection or bottom reflection is encountered and the step size has been

previously reduced less than hstart. The routine turnpoint handles turning

point and surface reflciion approximations. Bottom roflect'ons are handled

by calling the routine bottomstep.

b. bottomstep

This routine handles stepping the ray to the bottom and also

steps the ray path away from the bottom, using the linear sound speed profile
approximation. The ray path is stepped to within a user-specified distance

from the bottom.

3. Gaussian Beams

a. Gamm

This routine computes a portion of the Gaussian beam

formula at the same time as the ray path, as discussed in Chapter VI.

89

b. sqrtBranch

This routine determines whether the function q(s) has crossed

the imaginary axis. If it has, then the array index (used to store ray path

points) is stored for later use.

c. GaussSumm

This routine computes the Gaussian beam summation at a
particular receiver point. This routine is called after the entire ray path has

been computed.

4. Support Routines

a. control

This is the first routine called once a new work packet has b2en

received. It in turn calls the routine RKF4 to compute the ray path and then

the routine GaussSumm to compute the Gaussian beam summation. This
routine then converts the ray path coordinates (xy,z) into screen coordinates

(h,v) for the Macintosh. The screen coordinate data is then sent to the

Macintosh via the buffer processes.

b. c(z)

This routine returns the speed of sound, along with its first
and second derivatives, at a given depth value. These values are computed

using the cubic spline interpolation method.

c. bottomval

This routine returns the bottom depth and gradient at a given
range value. These values are computed using the cubic spline interpolation

method.

90

d. fcn

This function is used to evaluate the ray equation at the given

depth value. The solutions for the travel time and the Gaussian beam

equations are also computed.

e. setup

Ths routine converts the initial ray angle from degrees to

radians, computes the initial Snell's constant value and sets up the initial

conditions for the Gaussian beam solution.

f. tpq

This function computes the travel time and the p(s) and q(s)

values using the linear sound speed approximation.

g. increment

This routine simply increments the array index used to store

the ray path and Gaussian beam values. It also checks to see if the array index

is within the specified bounds.

h. Complex Math Functions

Complex math functions are not handled intrinsically in C, as

they are in Fortran. These routines, therefore, provide simple complex math

operations such as add, multiply, divide, etc., given two complex arguments.

C. MAIN LISTING

#include <conc.h> /* concurrency routines for transputer */
#include <math.h> /* standard math library */
#include "messageID.h" /* message constants */
#include "raydefs.h" /* ray tracing constants and structures */

#define TRUE 1
#define FALSE 0

91

#define true
#diefine fal'e 0

#define MAXBUFFER 512
#define SrACKSIZE 1000 /* stack size for Throughput

and Feedback*/
#define CHIPRAMSIZE 3500 /* amount of on-chip RAM used for Render

stack frame */

#define getinpack4Et(c~p,s) Chanln(c, (char *)&ps)
#define putinpacket(c,p,s) ChanOut(c, (char *)&p,s)
#define getoutpacket(c,p,s) Chanln(c, (char *)&p,s)
#define putoutpacket(c,p,s) ChanOut(c, (char *)&p,s)

int ourID = 0; /*our unique ID number *
int downstream = FALSE; /* FALSE =no transputers after

this one ~

* Throughput process of standard workfarn

int throughput(procdesc,f--omprev, tonext, toiccal)
int procdesc;
Channel *fromprev, *tonext, *tolocal;

mnt msg,len;
int procID;
Channel *chan;
mnt dead, idx;
char *buff;
double angle;

dead = FALSE;
while (!dead) { /* run until the power is turned off

do
idx = ProcAlt(fromprev,0); 1* wait for something on ~

while (idx ==-1); /* fromprev channel
switch (idx)

case 0: /* fromprev ~
msg = Chanlnlnt(fromprev); /* get message type *
switch (msg)f

case MSG-PASS: /* used for passing boot code

downstream */
procID = Chanlnlnt(fromprev); /* get processor ID ~
len = Chanlnlnt(fromprev); /* length of message *

/* if downsteam = FALSE then pass only data
of message ie. the boot code *
if (downstream == FALSE)j

passdata (fromprev, tonext, len);
downstream = TRUE;

else{ /* pass the whole thing *

92

ChanOutlnt (tonext,MSGPASS);
ChanOutlnt (tonext,proclD);
ChanOutint (tonext, len);
rxassdata (fromprev, tonext, len);

break;
case MSGPROCID:

procID = Chanlnlnt (fromprev);
if(ourID ==0)

ourID prociD; 1* we now have an ID number ~
else(1* we already have an ID *

ChanOutlnt (tonext,MSGPROCID);
ChanOutint (tonext,procID);

break;
case MSG-ANGLE: /* work packet *

proclD = Chanlnlnt(fromprev);
len = Chanlnlnt(fromprev);
Chanln (fromprev, &angle, len);
if(procID == ourID) 1* message is for us ~

chan = tolocal;
elsc 1* message is not for us

cl'ian = tonext;
ChanOutlnt (chan,MSGANGLE);
ChanOutlnt (chan,procID);
ChanOutlnt (chan, len);
ChanOut (chan, &angle, len);
break;

case MSG_-WORK: /* work parameters ~
procID = Chanlnlnt(fromprev);
len =Chanlnlnt(fromprev);

buff =(char *)malloc(len);
Chanln(fromprev,buff,len);
if(procID == ourID)

chan = tolocal;
else

chan = tonext;
ChanOutlnt (chan,MSGWORK);
ChanOutlnt (chan,proclD);
ChanOutlnt (chan, len);
ChanOut (chan,buff,len);
free (buff);
break;

case MSGTEST: /* test message *
procID = Chanlnlnt(fromprev);
len = Chanlnlnt(fromprev);
if(procID == ourID)

chan = tolocal;
else

chan = tonext;
ChanOutlnt (chan,MSGTEST);
ChanOutlnt (chan,procID);
ChanOutlnt (chan, len);
break;

93

default: /* used to receive all other message
types - they are stored as a series
of bytes */

procID = ChanInInt(fromprev);
len ChanInInt(fromprev);
buff = (char *)malloc(len); /* allocate space */
Chanln(fromprev,buff,len); /* read data */

if(procID == ourID)
chan = tolocal;

else
chan = tonext;

ChanOutInt(chan,msg);
ChanOutInt(chan,procID);
ChanOutInt(chan, len);
ChanOut(chan,buff,len);
free(buff); /* free memory "/
break;

break;
default:

while (!dead)
/*msg = ChanInChar(fromprev);*/ /* hang */

break;

* This routine is used by the throughput process to pass
Adata through from an input channel to an output channel.
* it does so in blocks of up to MAXBUFFER bytes. Taken from
* examples provided by Levco.
*/
void passdata(inc, outc, len)

Channel *inc, *outc;
int len;

char buffer[MAXBUFFER];
int todo, thislength;

todo = len;
while (todo > 0) {

thislength = todo>MAXBUFFER ? MAXBUFFER:todo;
Chanln(inc,buffer,thislength);
ChanOut(outc,buffer,thislength);

todo -= MAXBUFFER;

* This is the standard buffer process. Note that although
* six buffers are used, only one copy of the code is
* required.

94

int buffer(procdesc, toBuffer, fromBuffer)
mnt procdesC;
Channel *toBuffer, *fromBuffer;

int msglD, proclD, MsgLength;
char *nisg;

while (TRUE)
rnsgID =Chanlnint(toBuffer);
procID Chanlnlnt(toBuffer);
msgLength = Chanlnlnt(toBuffer);
if (msgLength 0) OH /* if message length =0 then

Chanln will not work 1
msg (char *)malloc(msgLength);
Chanln(toBuffer, msg, MsgLenqth);

Chan~utint (fromBuffer, msqlD);
ChanOut Tnt (froruBuffer, procID);
ChanOutlnt (from-Buffer, msgLength);
if (msgLength != f

ChanOut (fromBuffer, rnsg, rz~nt)
free (msg);

* This process provides timing da-.A usinq the hiah resolution
* timer (1 psed) - it acts like a stop watch (on/off/on. .. and
* is run at high priority.

mnt stopwatch (procdesc,inc,outc)
mnt procdesc;
Channel *i-- *outc;

int start,stop;
int toggle;

while (TRUE)j
toggle = Chanlnlnt(inc); /* start timing *
start = Timeo; /* read start time *
toggle = Chanlnlnt(inc); /* stop timing */
stop = Timeo; /* read stop time *
ChanOutlnt(outc,stop-sta-t); /* return elapsed time ~

* The heart of the workfarm code. This is where the actual
* work (computations) is done.

95

/* global variables *

int turnflag; /* turning point, bottom or surface refl. '
ir~t done; /* stop work flag *

i t cit ;
int bcouat;
double trime; I' travel time at one point along ray path '
double omega;
double epsilon;
double scalesave;
double permScale;

position *raypath; /* ray path coordinates *
gauss-beam *beampath; /* beam parameters *I
complex *garmma; /* partial beam re3u11I *
mnt *branch; /* sqrt branch for q(s) '
screen-pos *screen; /* Mac screen coordinates of ray path',

source posn source; /* source position */
position receiver[l1[lJ;/' receiver position '
sound profile profile; /* SS profile data */
bottom profile bprofile; /* bottom bathymetry dat~a
work params work; I' various parameters *7
beam params beamparan; /* Gauss. beam parameters .

ray-result finray; I' end point, etc of ray *
screen data s; I' size, etc of Mac screen '

Channel *outChan;

mnt render(procdesc,tolocal, fromlocal, totimer, frontimer)
mnt procdesc;
Channel *tolocal, *fromlocal, *totimer, *fiomtimer;

int procID;
sta,4'- mt numtimes =0;
int len;
mnt thetime;
mnt temp;
double theta;

outChan = fromlocal;

/* allocate the memory required Lu store all the data '
raypath =(position *)malloc(sizeof (position) 'maxray-poin.-ts);
beampath =(gauss beam *)malloc(sizeof(gauss -beam)*maxraypoints);
gamma =(complex *)malloc(sizecf(com-plex)*maxraypo*its);
branch =(mnt *)malloc(sizeof(int)*maxraypoints);
screen =(screen-pos *)malloc(sizeof(screenpos)*maxraypoints);

while (TRUE) f
switch (Chanlnlnt (tolocal))

case MSGANGLE: /* work packet '
procID = Chanlnlnt(tolocal);
len = Chanlnlnt(tolocal);
Chanln(tolocal,&theta,len);

ccnitrol (theta);
break;

case MSG_-SSPROFILE: /* SS profile data ~
procID = Chaqnnnt(toloca!);
len =Chanlnlnt(tolocal);
ChanIn~tclocal,&prntile~len);
break;

case MSGSPROFILE: /* bottom data '
proclD = Chanlnlnt(tolocal);
len =Chanlnlnt(toiocal);
Chanln(tolocal,&bprofile,len);
break;

case MSG REAM: /* Gauss. beam params '

proclD Chanlnlnt(tolocai);
len =Chanlr.Int(tolocal);
Chanln (toloaal, &beamparan, len);
break;

case MSG SOURCE: /* source position '
procID = Chanlrjnt(tolocal);
len = Chanlnlnt(tolocai);
Chanln(tolocal,&source,len);
break;

case MSG RECEIVER: /* receiver position .

procID =Cbhanlnlnt(tolocal);
len =Chanlnlnt(tolocal);
ChanIn(tolocal,&receiver[O1 [Q1,len);
break;

case MSG SCREEN: /* screen parameters'
procID = Chanlnlnt(tolocal);
len = Chaninint(tolocal);
Chanln (tolocal, &s, len);
break;

case MSG WORK: /* misc, parameters '
procID = Chanlnlnt(tolocal);
len =Chanlnlnt(tolocal);
Chanln(tolocal,&work,len);
permScale = work.scaleMax;
break;

case MSG-TEST: /* test message *
procID = Chanlnlnt(toiocal);
len = Chanlnlrnc(tolocal);
testmsg(procIt,len);
break;

default:
/* none
break;

* Send back test message - this is mainly used to sei~d
* back various 'things'. It is useful during software
* development to send back addresses of variables, etc

testmsg (proc ID, len)

97

Chan~utlnt (outChan,MSGTEST);
Ch-anCu-. nt (out Ch anr,proc I);
Chanjutlnt (outChan, len);

This function coordinates the various thirngs that need-
to be done.

voio,' cor,trol (theta)
theta; /* theta in dEgrees *

i nt len;
register i;

work.scaieMax = permScale; /* store scaleMax s:c we or'
scalesave = perrnScale; /* lose it ~
finray.botton hits =;

finray.surface hits = 0;
P.K4(theta); /* do ray trace firot-

Gau s s S u=~ /* then the Gauss. be& .t>:--ff

/* convert raypath to Mac screeni coordinates *

focr (I 0; i < cnt ; i++)I
screen[i].h = HRaypos(raypath[iv'jx);
screen[i] .v = VRaypos(raypath< ''.z);

/* send the data back to the Mac (via a few' buffers '

len = cnt*si4zeof (screen pos);
Chan~utlnt(outChan,MSGRAYDATA);
ChanOutlnt (outChan,ourlD);
Chan(Dutlnt (outChan, len);
C'hancut (cutChan, screen, len);

* Converts depth (z) value into vertical pixel location
* for Mac display

int VRaypos (z)
doubl-e z;

return(s.top + s.RayPixelsV*(z/s.RayScaleV));

* Converts range (x) value into horizontal pixel location
* for Mac display

mnt HRaypos(r)
double r;

return(s.left + s.RayPixelsH* (r/s.RayScaleH))

98

* Computes c, c', c'' for a given depth value using cubic spline

c (z, svel)
double z; /* given depth ~
sound-speed *svel; /* used to store return values ~

int i = 0;
int eridflag =0;
double w,nct w;
double del z;
int step;
double endgrad = 0.016; /* typical depth dependent *

/* gradient */

/* find upper index for this depth in SSP data *

i 0;

while (profile.z[i] <= z){

if (i==profile..npts)f { z value is past the last ~
i - 1; /* tabulated value ~
endflag =1;
break;

/* evaluate speed of sound *

delz = profile.z[i) - profile.z[i-11;
if (endflag == 1)

w =1.0;

else
w (z - profile.z[i-1]),del-z;

not w 1.0 - w

/* speed fsound *
svel->c = (not w)*profile.c[i-1] + w*profile.c[i]

+ del Tz*del-z*(profile.a~iJ*(pow(w,3.0) - w)
+ profile.afil13*(pow(not -w,3.0) - not-w));

if (endflag ==1)f { * use linear interpolation *
del z = z -profile.z~i];

svel->c += del z*cndgrad;
svel->g = endqrad;
svel->gg = 0.0;

else(
/* speed of sound gradient *
svel->g = (profile.c[iJ - profile.c[i-l])/del-z

+ del-z*(Profile.a[i]*(3.0*w*w - 1)
- profile.ati-1]*(3.0*not-w*not-w - 1.0));

/* second derivative of speed of sound */
svel->gg = 6.0*(notw*profile.afi-1) + w*profi4le.a[i]);

* Compute bottom depth and gradient for a given range value

99

*/

bottomval (r,bot)
double r; /* given range value */
bottom-point *bot; /* used to store return values */

int i = 0;

int endflag = 0;
double w,not w;
double del r;
int step;

/* find upper index for this range in bottom data */
i = 0;
while (bprofile.r[i] <= r)f

++i;

if (i==bprofile.npts) { /* range is past last */
i -= 1; /* tabulated value */
endflag = 1;
break;

del r = bprofile.r[i] - bprofile.r[i-l];
w = (r - bprofile.r[i-l])/del r;
not w = 1.0 -w;

if(endflag == 1) { /* bottom value is set to last */
bot->z = bprofile.z[i]; /* tabulated value ie.flat bottom */
bot->g = 0.0; /* gradient is zero

else(
bot->z = (not w)*bprofile.z[i-lI + w*bprofile.z[i]

+ del r*del r*(bprofile.a[i]*(pow(w,3.0) - w)
+ bprofile.a[i-l]*(pow(not w,3.0) - notw));

bot->g = -1.0*((bprofile.z[i] - bprofile.z[i-1])/del r
+ del r*(bprofile.a[i]*(3.0*w*w - 1)
- bprofile.a[i-l]*(3.0*not w*not w - 1.0)));

/*** ***

* Evaluates ray equation and computes p's q's and travel time
*/

fcn(h,z,b,misc, k)
double h,z;
gauss_beam *b;
extra stuff *misc;
double k[5];

sounc speed svel;
bottompoint bot;
double temp, c2,cosinc;

/* compute z value */
if (z < 0.0) /* this shouldn't happen */

100

c(0.0,&svel);
else

c (z, &svel);
temp =pow(l.0/(misc->a*svel.c),2.0) - 1.0;
if (temp < 0.0)f

turnflag turn pt; /* turning point *
k[zvalj -1.0;

else
k[zvall h*sqrt(temp);

/* compute p's and q's ~
c2 = svel.c*svel.c;
cosine =cos(misc->angle);
k[plval] h*(-l.0*svel.gg*b->ql/(c2*cosine));
k~qival] = h* (svel.c*b->pl/cosine);
k[p2val] =h*(-1.0*svel.gg*b.->q2/(c2*cosine));
k[q2val] = h* (svel.c*b->p2/cosine);

*Set up initial parameters.

void setup (svel,misc, beam)
sound-speed *svel;
extra-stuff *rnisc;
gauss-beam *beam;

if(misc->angle == 0.0) /* a little fudge required *

misc->angle += 0.001; /* for transputer version of code *

misc->angle = misc->angle*PI/180.0; /* convert degrees *
/* to radians */

misc->a = cos(misc->angle)/svel->c; /* Snell's constant ~

/* determine initial direction of ray */
if ((misc->angle < 0.0) 11 (misc->angle ==0.0 && svel->g < 0.0))

misc->direction = down;

else
misc->direction = up;

misc->angle = fabs(misc->angle);

1* Gauss. beam I.C.'s */
omega = 2.0*PI*source.frequency;
beam->pl = 1.0;
beam->ql =0.0;
beam->p2 =0.0;
beam-q2 = 1.0;

/* pick optimum estimate for epsilon *
switch (beamparam. IC)f

case fillbeams: 1* space filling beams *
epsilon = 2.0*svel->c*svel->c/(omega*

work.angle_incr*work.angle-incr);

101

break;
case minwidthbeams: /* min. width beams ~

epsilon = svel->c*receiver[O] [01.x;
break;

case cervenybeams: /* not implemented yet *
break;

/ ** *** *** **** *** *** **** *** *** *** **** *** *** **** *** *** ***

* Handle turning points and surface reflections

void turnpoint (ray,misc,beam)
position *ray;
extra stuff *m-msc;
gauss beam *beam;

sound -speed svel, refl_svel;
double temp z,temp_angle,temp-r;
double refl -angle~delta_z,delta_r,step~sameg;
bottompoint bot;
mnt 1;

switch (turnflag)f
case surf refi: /* surface reflection *

c (ray->z, &svel);
temp_z = ray->z, temp angle = misc->angle;
c(0.0,&refl_svel);
refl-angle = fabs(acos(cos(temnp_angle) *refl -svel.c/svel.c));
delta-r = fabs((sin(temp angle) - sin(refl-angle))/

(misc->a*svel.g));
if (ray->x + delta -r < receivertOfl0].x){

ray->z =0.0;
finray.surface -hits += 1;
tpq(delta -r,misc->angle,&svel~beam);
increment 0;
Gamm(-1.0*misc->angle*rlisc->directiofl,&svel,beam);
ray->x += delta r;
misc->direction = -l.0*misc->direction;
misc->angle refl -angle;
raypath[cnt) *ray;
beampathllcnt] *beam;
sqrtBranch 0;

if (ray->x + delta -r < receiver[0] [0].x)f
/*ttime += fabs(delta r/(svel.c*cos(misc->aflgle)));*/
tpq(delta -r~misc->angle,&svel~beam);
increment 0;
Garmn(-1.0*misc->angle*misc->direction,&svel,beam);
ray->z = temp_z, misc->angle = temp angle;
ray->x += delta -r;
raypath~cnt] =*ray;

beamnpath[cnt] *beam;
sqrtB ranch 0;

else(

102

c(ray->z,&svel);
delta-r = receiver(O] [0].x - ray->x;
misc->angle = fabs(asin(sin(misc->angle) +

delta r*rnisc->a*svel.g));
delta-z = fabs((cos(rnisc->angle)/misc->a -

svel.c) Isvel.g);
tpq(deltar,misc->angle,&svel,beam);
increment 0;
Gamm(-l.0*misc->angle*m-isc->direction,&svel,beam);
ray->z += risc->direction*delta-z, ray->x += delta r;
raypath[cnt] =*ray;

beampath[cnt] =*beam;

sqrtBranch 0;
done = true;

break;
case bott refl: /* Bottom reflection *

bottom step (ray,misc, beam);
break;

case turnpt: /* turning point *
c (ray->z, &svel);
same g = svel.g; 1* use same g throughout for approx. ~
tempz = *ray->z, temp_angle = misc->angle;
delta z = fabs(((.O/misc->a) - svel.c)/same g);
delta r = fabs(sin(misc->angle)/(misc-~>a*same_g));
if (delta-r == 0.0){ / zero start condition *

ray->z += misc->direction*O.05;
c(ray->z,&refl -svel);
misc->angle = fabs (acos (cos (temp angle)

*refl svel.c/svel.c));
delta-r = fabs ((sin (temp_angle) -sin (misc->angle)) /

(misc->a*same-g));
ray->x += delta-r;
tpq(delta_r,misc->angle,&svel,beam);
increment 0;
Gamm(-l.O*misc->angle*misc->direction,&svel,beam);
raypath[cnt] =*ray;

beampathicnt] =*beam;

sqrtBranch 0;

elsef
if ((ray->x + delta r) < receiver[O(ON~x){

ray->z += misc->direction*delta z;
ray->x += delta r;
bottomval (ray->x, &bOt);
if (ray->z > bot.z){

ray->z - misc->direction*delta-z;
ray->x - delta r;
bottom step (ray,rnisc, beam);
break;

else(
tpq(delta r,rnisc->angle,&svel,beam);
increment 0;
Gamrn(-1.O*misc.->angle*misc->direction,&svel,beam);

103

misc->angle = 0.0;
misc->direction = -1.0*rnisc->direction;
raypath[cnt] =*ray;

beampathtcnt] *beam;
sqrtBranch 0;

if ((ray->x + delta r) < receiver[0I [0].x){
bottomval(ray->x + delta_r,&bot);
if (tempz > bot.z)f

bottom step(ray,misc,beam);
break;-

else(
ray->z = temp-z;
ray->x += delta r;
tpq(delta_r,misc->angle,&svel,beam);
increment 0;
Gammn(-l.0*misc->angle*misc->direction, &svel,be-am);
misc->angle =temp angle;
roypath[cnt] *ray;
beampath[cnt] =*beam;
sqrtBranch 0;

else(
c (ray->z, &svel);
delta -r = receiver[(I].x - ray->x;
misc->angle = fabs(asin(sin(misc->angle) +

delta -r*misc->a*same_g));
delta-z = fabs(((cos(misc->angle)/misc->a)-

svel.c)Isame_g);
tpq(delta_r,misc->angle,&svel,beam);
increment 0;
Gamm(- . 0*misc->angle*misc->direction, &svel,beam);
ray->z += zisc->direction*delta_z, ray->x += delta r;
raypath[cnt] *ray;
beampath[cnt] =*beam;

sqrtBranch 0;
done =true;

break;
/* end of switch *

* Steps ray path to, and out from bottom.

bottom -step(ray,misc,beam)
position *ray;
extra-stuff *misc;
gauss-beam *beam;

int

104

sound-speed svel,refl-svel;
bottompoint bat;
double step;
double delta-z,delta-r,refl_angle;

c (ray->z, &svel);
step = 0.0,delta -z = 0.0,delta-r = 0.0;
refl angle =misc->angle;
bottomval (ray->x, &bot);
step = 0.5*(bot.z - ray->z);
i= 0;

while (fabs (bot.z-(ray->z+misc->direction*delta-z)) >
work.bottom-tolerance)f

c(ray->z+misc->direction* (delta -z+step) ,&refl_svel);
refi angle = fabs (acos(cos(misc->angle) *refl-svel.c/svel.c));
delta_r =fabs((sin(misc->angle) - sin(refl angle))!

(misc->a*svel.g));
bottomval(ray->x + delta_r,&bot);
if ((bot.z > (ray->z+misc->direction*(delta-z+step))))

delta z += step;
else

step = 0.5*step;

/* step ray into bottom *
ray->z += misc->direction*delta_z, ray->x += delta-r;
tpq(delta -r,misc->angle,&svel,beam);
increment 0;
Gamrn(-l.O*risc->angle*misc->direction,&svel,beam);
misc->angle = refl -angle;
c(ray->z,&refl svel); /* compute svel at bottom *
if ((misc->direction = down) && ((refl angle +

2.0*atan(bot.g)) > 0 0))
misc->direction = -1. 0*misc->direction;

finray.bottom hits += 1;
raypathilont] *ray;
beampath(cnt] =*beam;

sqrt Branch 0;

1* step ray to next point *
misc->angle += 2.0*atan(bot.g); 1* new angle after *

/* bottom reflection *
misc->angle = fabs(misc->angle);
if (misc->angle > P1/2.0)

done = true;

/* compute new 'af value *
nmisc->a = cos(mLi3c->angle)/refl-svel c;
delta-z = 10.0;
c(ray->z,&svel);
c (ray->z+misc->direction*delta -z, &refl-svel);
refl-angle = fabs (acos (cos (misc->angle) *refl-svel.c/svel.c));
delta-r = fabs((sin(misc->angle) - sin(refl angle))!

(risc.->a*svel.g));

105

ray->z += misc->direction*delta-z;
ray->x += delta r;
tpq(delta_r,misc->angle,&svel,beam);
increment 0;
Gamm(-l. 0*ni sc->angle*misc-.>direction,&svel,beam);
misc->angle =refi -angle;
raypathl~cnt] *ray;
beampath~cc,, *beam.;
sqrtBranch0;

* Compute travel time and p's and q's (tpq's) when using linear
* approxiauation method (ie. at turning points, etc)

tpq(delta_r,anglefsvelfbeam)
double delta_r,angle;
sound-speed *svel;
gauss-beam *beam;

double tempjp, cosine, c2;

cosine = cos(angle);
c2 = svel->c*svel->c;
ttime += delta-r/(svel->c*cosine); /* compute new time ~

/* compute new p's & q's *
tempp = beam->pl;
beam->pl += delta r* (.0l*svel->gg*beam->ql/ (c2*cosine));
beam->ql += delta r*(svel->c*tempp/cosine);
temp-p = beam->p2;
beam->p2 += delta -r* (-1.O*svel-~>gg*beam->q2I (c2*cosine));
beam->q2 += delta-r*(svel->c*tempp/cosine);

* The Runge-Kutta-Fehlberg algorithm

/* Vars Global to RKF and reducestep routines ~
double hstart = 25.0; /* starting step size *
double h; 1* step size */
posiLion ray; /* single ray path position *
extra-stuff misc;
gauss-beam gb;

void RKF4 (theta)
double theta;

double k[7] [5);
bottomypoint bot;
sound-speed svel;
gauss -beam newb;
double newz;
double scale;
double err, zstep;

106

misc.angle = theta;
ray.z = source.z, ray.y =source.y, ray.x source.x;
c (ray. z, &svel);
setup(&svel,&misc,&gb);
ont =0;
bcount = 0;
h =hstart;
ttirne =0.0;

done =false;

raypathrcnt] =ray;

bearnpathlcnt] gb;
Garnn(.0*misc.angle*misc.direction,&svel,&gh);

while(!done)(

newz = ray.7;
newb = gb;
fcn(h,newz,&newb,&misc,&k[1]); /* first fcn evaluation *
if (k[l] [zval] < 0.0)f

reducestep 0;
continue;

newz = ray.z + misc.direction*k[ll~zval]/4.0;
newb.pl = gb.pl + ktl][plval]/4.0;
newb.p2 =gb.p2 + k[l][p2vall/4.0;
newb.ql = gb.ql + k~l][qlvalJ/4.0;
newb.q2 = gb.q2 + k[lltq2val)/4.0;
fcn(h~newz,&newb,&misc,&k[2]); /* second fcn evaluation *
if (k[2] [zval] < 0.0)

reducestepo;

continue;

newz = ray.z+misc.direction*
(3.0*k[l][zval]+9.0*k[2][zval])/32.0;

newb.pl = gb.pl + (3.0*k[l][plval]+9.0*k[2][plval])/32.0;
newb.p2 = gb.p2 + (3.0*k[1]Ep2val]+9.0*k(2][p2val])/32.0;
newb.ql = gb.ql + (3.0*k[l][qlval]+9.0*k(2][qlval])/32.0;
newb.q2 = gb.q2 + (3.0*k[1][q2val)+9.0*k[2J[q2val])/32.0;
fcn(h,newz,&newb,&misc,&k[3]); 1* third fcn evaluation *
if (k[3) [zvalJ < 0.0)f

reducestep 0;
continue;

newz = ray.z+rrjsc.direction*(1932.0*kl ~zval]-
7200.0*k[2J [zval]+
7296.0*k[31 [zval])/2197.0;

newb.pl =gb.pl+(1932.0*kII1][plval]-7200.0*k(2][plval]+

7296.0*k[3] [plval])/2197.0;
newb.p2 =gb.p2+(l932.0*k[l][p2va1]-7200.0*k[2]tp2valJ+

7296.0*k[3] [p2val])/2197.0;
newb.ql =gb.q1+(l932.0*k[1][qlval1-7200.0*k[2J[qlval]+

7296.0*k[3] EqlvalD)/2197.0;
newb.q2 =gb.q2+(1932.0*k(lJ[q2val]-7200.0*k[2]tq2val]+

7296.0*k:2] [q2vdl))/2l97.0,
fcn(h,newz,&newb,&rnisc,&k[43); /* fourth fcn evaluation *

107

if (k(4) [zval]I < 0. 0)
reducestep 0;
continue;

newz = ray.z + risc.direction*(439.0*k[llzvalJ/216.O
8.0*k[2H[zval] + 3680.0*k113][zval]/513.0-
845.0*k[4][zval]/4104.0);

newb.pl = gb.pl + (439.0*k[l](plval]/216.0 -

8.Q*k[2]1[plval] + 3680.0*k313 plvalJ/513.0-

845.0*k414]plval]/4104.0);
newb.p2 = gb.p2 + (439.0*k[1] [p2val]/216.0 -

8.0*k[2][p2valJ + 3680.0*k[3]Mp2val)/513.0-

845.0*kE4]Hp2valJ/4104.0);
newb.q. = gb.ql + (439.0*k[1] [qlval]/216.0 -

8.0*k123 [qival] + 3680.0*k[3] [qlvalj/513.0-
845.0*k414[qlvalJ/4104.0);

newb.q2 = gb.q2 + (439.0*k1] [q2val]/216.0 -

8.0*k [2] [q2val) + 3680.0*k[3J [q2val)/513.0-

845.0*k[4)Hq2val]/4104.0);
fcn(h,newz,&newb,&misc,&kt51); /* fifth fcn evaluation ~
if (k [5) [zval] < 0. 0)

reducestepo;
continue;

newz = ray.z + risc.direction*(-8.0*kE1][zval]/
2 7 .O +

2.0*k[2][zval) - 3544.0*k113]tzval]/2565.0 +

1859.0*kI4zval]/4104.0 - 11.0*k115]Izval]/40.0);

newb.pl = gb.pl + (-8.0*k[1N(plval]/27.0 +
2.0*k[2] [pival] - 3544.0*k[3] fplval]/2565.0 +

1859.0*k[4H[plval]/4104.0 - l1.0*k[51[plvall/40.0);

newb.p2 = gb.p2 + (-8.0*k[l][p2val1I/27.0 +
2.0*k[2] [p2val] - 3544.0*k13] [p2vall/2565.0 +

1859.0*k[41[p2val]/4104.0 - 11.0*kL53[p2val]/40.0);

newb.ql = gb.ql + (-8.Q*k[l1Hqlval]/27.0 +
2.0*k[12] [qival] - 3544.0*k[3] [qlval]/2565.0 +

1859.0*k[4]tqlval]/4104.0 - 11.0*1kr5Hqlval]/40.0),

newb.q2 = gb.q2 + (.-8.0*k[1][q2val]/27.0 +
2.O*k12] [q2val] - 3544.0*k[3] [q2val]/2565.0 +

1859.0*k[4llq2valI/4104.0 - 11.0*k[5]tq2val]/40.0);
fcn(h,newz,&newb,&misc,&k[6D); 1* final fcn evaluation *

if (k[6][zval] < 0.0)(
reducestepo;
continue;

/* compute error estimate ~
err = fabs(k(1] [zval]/360.0 - 128.0*k[3] [zval]/4275.0-

2197.0*k[4] [zval]/75240.0 +

k[5] [zval]/50.0 + 2.0*k[1][zval]/55.0);

if (err/h < work.tolerance) f /* error is acceptable *

/* compute new values of z, p and q */
zstep = rrsc.direction*(25.0*kfl] [zval]/216.0 +

1408.3*k[3HfzvalJ/2565.0 +

2197.0*k[4]tzvall/4104.0 - k[5][zval]/5.0);

gb.pl += (25.0*k[l][plval]/216.0 +

108

l4O8.0*k[3J[plvall/2565.0 +
2197.0*k[41[plval]/4l04.0 - k[5][plval]/5.0);

gb.p2 += (25.0*k[l][p2val]/216.0 +
1408.0*k[3][p2valJ/2565.0 +
2197.0*k[4][p2val]/4l04.0 - k[5J[p2val]/5.0);

gb.ql += (25.0*k[1)[qlvalj/2l6.0 +
1408.0*k[3][qlval]/2565.0 +
2197.O*k[4][qlvalI/4104.0 - k[5]fqlval]/5.0);

gb.q2 += (25.O*k[l][q2val]/216.0 +
1408.0*k[31[q2val]/2565.O +
2197.0*k[4][q2val]/4104.0 - k[51[q2vall/5.0);

ray.z += zstep;
ray.x += h;
if (ray.z < 0.0H{ /* check if we surfaced ~

turnflag = surf -refi;
ray.z - zstep; /* step ba~k ~
ray.x - h;
reducestepo; /* reduce step size ~
continue;

bottomval(ray.x,&bot); /* check if we bottomed out ~
if ((ray.z > bot.z) && (fabs(ray.z - bot.z) >

work.b'jttom tolerance))
turnflag = bott refi;
ray.z - zstep; 1* step back *

ray.x - h
reducestepo; /* reduce step size ~
if (misc.angle > P1/2.0)

done = true;
'continue;

ttime += h/ (svel .c*cos (misc. angle));
if (ray.x >= receiver[0] [0].x) /* past receiver range *

done = true;
increment o;
Gamm(-1.0*misc.angle*misc.direction,&svel,&gb);
raypath[cnt] =ray;

beampath[cnt] =gb;

sqrtBranch 0;
c(ray.z,&svel);
misc.angle = acos(svel.c*misc.a);

/* scale step size *
scale = O.8 4*pow((work.tolerance*h/err),0.25);
if (scale < work.scaleMin) scale = work.scaleMin;
if (scale > work.scaleMax) scale = work.scaleMax;
h = h*scale;
if(h < 1.0)1 /* stap is kind of smal- ?*

reduce step 0;
continue;

if ((ray.x + h) > receiverlO][0] .x) /* don't step past *
1* receiver *

h = receiver[0] [0] .x - ray.x;

109

finray.rayend = ray; /* return final ray position */
finray.angle = misc.angle;

finray.time = ttime;

* Reduces integration step size
*/

reducestep()

work.scaleMax = 1.0;

h = h/2.0;
if (h < hstart){

work.scaleMax = scalesave; /* restore scalemax to *

/* original value */
turnpoint(&ray,&misc,&gb); /* go to turning point approx. */
h = hstart;

* Increments array index used for storing ray path. Also
* checks if we have too many points
*/

increment()

cnt++;
if(cnt >= maxraypoints)

done = true;

* Checks for p(s) imag. axis crossings.

sqrtBranch()

double ql,q2;
if(cnt == 0)

branch(0] = 0;

else(
ql = beampath[cnt-1].q2, q2 = beampath[cnt].q2;
if(((ql < 0.0)&&(q2 > 0.0)) I ((ql > 0.0)&&(q2 < 0.0))){

branch[bcount] = cnt; /* store index where crossing */
/* occurred */

bcounti i-;

* Complex math functions
*/

complex comp(x,y) /* assign reals to type complex */
double xy;

complex z;

110

z.re = x
z. im = Y
return (z);

complex cadd(.x,,y) /* complex add ~
complex x~y;

complex z;

z.re x.re + y.re;
Z . i M x .im + y .r;
retlurn(z);

complex cmult(x,y) /* complex multiply ~
c ompl ex xry;

complex Z;

z.re =x.re*y.re -x. irr*y.im;
z.im = x.re*y.im + x.imy.re;
return (z)

complex cmultd(x,y) , complex times a constant .
double X
complex y;

complex z;

z.re =y.re*x;
z.im = y.im*x;
return (z);

complex cdiv(x,y) /* complex division *

complex xry;

complex Z;
double den;

if (y.re == 0.0 && y.im ==0.0){ /* divide by zero ~
z.re = HUGE_-VAL, z.im =HUGEVAL;

return (z);

else(
den = y.re*y.re + v.im*v.im;
z.re =(x.re*y.re + x.im*y.im)/den;
Z.im = (y.re*x.il - x.re*y.im)/den;
return (z);

double real (x) /* return real part ~
complex x;

return (x. re);

double imag(x) /Q return complex part *

complex X

return (x. im);

* Computes part of Gauss. beam equation at same time
* as ray path is computed.

Gamm(theta,svel,beam)
double theta;
sound-speed *svel;
gawssbeam *beam;

double c2;
double cs, cn, tr, tz;
complex p,q,res,compo,cdiv(),cmultdo;

tr =cos (theta);
tz = sin (theta);
Ac= svel->c*svel->c;
cs = svel->?g*tz;
cn = -l.O*svel-~>g*tr;

p =comp(beam->pl,beam->p2*epsilon);
q = comp(beam->ql,beam->q2*epsilon);
res =cdiv (p, q) ;
gamma~cnt].re =O.5*res.re*tr*tr + 2.O*cn*tz*tr/c2 - otz'tzN2;

gamma[cntlim = O.5*res.im*tr*tr;

* Compute Gauss. beam summation at particular feceivar locatir :.

GaussSummo(

register iV
double temp;
complex p, q, comp (),cdiv 0;

for (i= 0; i < cnt; i++)f
beampathfi] .p2 = beampath[iJ .p2*epsilon;
beampath[il .q2 = beampath [ii .q2*epsilon;

* Route messages back to Mac

int feedback(procdesc,fromlocal, fromnext, toprev)
int procdesc;
Channel *fromlocal, *fro.nuext, *toprev;

112

char *buff;

int msg,idx,len;
int procID,atime;
Channel *chan;
static mnt toggle = 0;

ChanOutlnt(toprev,MSGBOOTED); /* tell host we're alive ~

while (TRUE)f

/* NOTE: the code below alternates between two calls to
/* the same function ProcAlt. The ProcAlt function tends *
/* to favor the channel given first in the argument list
/* if both are ready at the same time. The two calls simply ~
/* alternates the order of the arguments for a more
/* equitable approach when both channels are ready for input ~

swit-ch (toggle)(
case 0:

do
idx = ProcAlt(fromlocal,fromnext,0);

while (idx==-l);
switch (idx)(

case 0: chan = fromlocal; break;
case 1: chan = fromnext; break;

toggle = !toggle;
break;

caze 1:
do

idx = ProcAlt(fromnext,fromlocal,C);
Iwhile (idx==-l);

switch (idx)
case 0: chan = frornnext; break;
case 1: chan = fromlocal; break,

toggle = !toggle;
break;

Msg =Chanlnlnt(chan);

switch (msg)f
case MSGBOOTED:

ChanOutlnt (toprev,MSGBOOTED);
break;

case MSG TEST:
proclD = Chanlnlnt(chan);
len = Chanlnlnt(chan);
ChanOutlnt (toprev,MSGTEST);
ChanOutlnt (toprev, proclD);
ChanOutlnt (toprev, len);
break;

case MSGWORKDONE:
proclD = Chanlnlnt(chan);
len = Chanlnlnt(chan);

1 13

buff = (char *)malloc(2 en);
Chanln(char.,buff,len);
ChanOutlnt(toprev,MSGWORK DONE);
ChanOutlnt (toprev,proclD);
ChanOutlnt (toprev, len);
ChanOut (toprev,buff, len);
free (buff);
break;

case MSGRAYDATA:
procID = Chanlnlnt(chan);
len =Chanlnlnt(chan);

buff =(char *)malloc(len);
Chanln(chan,buff,len);
ChanOutlnt(toprev,MSGRAYDATA);
ChanOutlnt (toprev,procID);
ChanOutlnt (toprev, len);
ChanOut (toprev, buff, len);
free (buff);
break;

* This is the NAIN part of the program (MAIN in the C context).
* This is where all the process allocation and prioritization and
* channel allocation is handled.

/* Declare channels *
Channel *tolocal, *fromlocal; /* non-link channels ~
Channel *tolnBufferO,*tolnBufferl,*tolnBuffer2;
Channel *fromOutBufferO, *fromOutBufferl, *fromOutBuffer2;
Channel *totimer, *fromtimer;

/* Declare processes */
Process *pthroughput, *prender, *pfeedback;
Process *plnBufferO, *plnBufferl, *plnBuffer2;
Process *pOutBufferO, *pOutBufferl, *pOutBuffer2;
Process *pstopwatch;

extern char * -heapend; 1* points to end of heap space ~
extern char * heapstart; /* points to start of heap space *

maino()

-har chipRAM[CHIPRA4SIZE]; /* allocate memory from on-chip RAM *

_heapend = Ox8Ol0iOOO; /* 1 MByte Module ~

/* allocate the internal channels *
tolocal = ChanAlloco;
fromlocal = ChanAlloco;
tolnBufferO = ChanAlloco;
tolnBufferl = ChanAlloco;

114

tolnBuffer2 = ChanAlloco;
fromOutBufferO = ChanAlloco;
fromOutBufferi ChanAlloco;
fromOutBuffer2 = ChanAlloco;
totimer = ChanAlloco;
fromtimer = ChanAlloc();

prender = (Process *)malloc(sizeof(Process));
Proclnit(prender,render,chipRAM,CHIPRA.MSIZE,4,tolocal,fromlocal,to

timer, fromtirner);

1* declare throughput process *
pthroughput = ProcAlloc (throughput,STACKSIZE, 3,

LINKOIN, LINKlOUT, tolnBuffer2);

/* declare input buffers */
plnBuffer2 = ProcAlloc(buffer,lOO,2,tolnBuffer2,tolnBufferl);
plnBufferi = ProcAlloc(buffer,lOO,2,tolnBufferl,tolnBufferO);
plnBufferO = ProcAlloc(buffer,lOO,2,tolnBufferO,tolocal);

/* declare output buffers */
pOutBufferO = ProcAlloc(buffer,lOO,2,fromlocal,fromOutBufferO);
pOutBufferi = E-rocAlloc (buffer, lOC,2,fromOutBufferO,

fromOutBufferi);
pOutBuffer2 = ProcAlloc(buffer,lOO,2,fromOutBufferl,

fromOutBuffer2);

/* declare feedback process */
pfeedback =ProcAlloc(feedback,STACKSIZE, 3, fromOutBuffer2,

LINKlIN,LINKOOUT);
/* declare stopwatch process */
pstopwatch = ProcAlloc(stopwatch,lOOO,2,totimer,fromtimer);

/* launch the processes in parallel *
ProcRun(prender); /* low priority */
ProcToHigh(); /* switch to high priority *
ProcPar (pthroughput,pfeedback,pstopwatch,plnBufferO,

plnBuffer , plnBuffer2, pOutBufferO,
pOutBufferl,pOutBuffer2, 0);

115

D. INCLUDE FILES

The following are two of the include (.h) files used for the ray tracing

algorithm. The first, messagelD.h, gives the message identification number

definitions. The second, raydefs.h, gives the definitions for some of the

constants and data structures used throughout the ray tracing and associated

algorithms.

1. messagelD.h

/*
* Message ID's and definitions
*/

/* Messages from Mac to transputer */
#define MSGPASS 0 /* pass data to next processor */
#define MSGPROCID 1 /* assign processor ID number */
#define MSGSSPROFILE 2 /* send sound velocity profile data */
#define MSGBPROFILE 3 /* send sound velocity profile data */
#define MSGWORK 4 /* send work parameters */
#define MSGBEAM 5 /* send beam parameters */
#define MSGANGLE 6 /* send work packet */
#define MSGSOURCE 7 /* send source position */
#define MSG__RECEIVER 8 /* send receiver position *1
#define MSGTEST 9 /* used for testing */
#define MSGSCREEN 10 /* used send Mac screen parameters */

/* Messages from transputer to Mac */
#define MSGRAYDATA 21 /* return ray data */
#define MSG BEAM-DATA 22 /* return beam data
#define MSGTIME DATA 23 /* return timing info
#define MSGERROR 999 /* not implemented
#define MSG-BOOTED 555 /* tell host we booted OK */

2. raydefs.h

#define maxpoints 50 /* max. number of points for SS profile */
#define maxbottompoints 100 /* max. number of points for bottom */
#define maxraypoints 2000 /* max. number of points for ray path, etc */

#define nil OL

#define up -1.0
#define down 1.0

#define surf refl 1 /* surface reflection */
#define bott refl 2 /* bottom reflection */

116

#define turnpt 3 /* turning point */

#define zval 0
#define plval 1
#define p2val 2
#define qival 3
#define q2val 4

/* beam parameter definitions */
#define incoherent 0
#define coherent 1
#define semicoherent 2
#define fillbeams 0
#define cervenybeams 1
#define minwidthbeams 2

#define PI 3.14159265

typedef struct{
double angle;
double a;
double direction;

} extra-stuff;

typedef struct{ /* sound speed profile data structure */
int npts; /* number of tabulated points */
double range; /* range (for range dependency) */
double a[maxpoints]; /* spline coefficients */
double z[maxpoints]; /* depth values */
double c[maxpoints]; /* speed of sound values */

} soundprofile;

typedef struct{ /* bottom bathymetry data structure */
int npts; /* number of tabulated points */
double atmaxbottompoints]; /* spline coefficients */
double z[maxbottompoints]; /* depth values */
double r[maxbottompoints]; /* range values */

} bottomprofile;

typedef structf /* bottom point data structure */
double z; /* depth of bottom */
double g; /* gradient of bottom */

} bottom_point;

typedef struct{ /* sound speed data structure */
double c; /* sound speed */
double g; /* sound speed gradient */
double gg; /* second derivative of sound speed */

} soundspeed;

typedef struct{ /* position data structure */
double x; /* range value */
double y; /* azimuthal value (not used) */
double z; /* depth value */

I position;

117

typedef struct{ /* source data structure */
double x;
double y;
double z;
double frequency; /* source frequency */

} sourceposn;

typedef struct{ /* work parameters data structure */
double thetaupper; /* upper ray angle */
double theta lower; /* lower ray angle */

double angleincr; /* angle increment */
int numRays; /* number of rays to trace */
double scaleMax; /* max step size scale value */
double scaleMin; /* min step size scale value /
double tolerance; /* integration error tolerance */

double bottom-tolerance; /* bottom tolerance value */
I work_params;

typedef struct(/* Gauss. beam parameters data sti .cture */
int radii; /* max. beam radii for windowing */
int summ; /* beam summation method */
int IC; /* beam initial condition type */

J beamparams;

typedef structf /* ray results data structure */
position rayend; /* final position of ray path */

double angle; /* final angle */
double time; /* travel time */
int surface hits; /* number of surface reflections */
int bottom-hits; /* number of bottom reflections */

I rayresult;

typedef struct(/* ray path data structure */
position ray; /* ray position */
double angle; /* ray angle */
double time; /* time of travel */

raypath;

typedef struct{ /* Gauss. beam data structure */
double pl; /* real(p) */
double p2; /* imag(p) */
double ql; /* real(p) */
double q2; /* imag(q) */

} gauss beam;

typedef struct{ /* complex number data structure */
double re; /* real part */
double im; /* imaginary part */

1 complex;

typedef structf /* exponential form of complex # */
double r; /* magnitude */
double theta; /* phase */

}complexExp;

118

typedef struct{ /* screen coordinate data structure */
int h; /* horizontal position */
int v; /* vertical position */

} screenpos;

typedef struct(/* screen parameters data structure */
int top; /* top of drawing area */
int left; /* left side of drawing area */
int RayPixelsV; /* number of vertical pixels */
int RayPixelsH; /* number of horizontal pixels */
int RayScaleV; /* vertical scale */
int RayScaleH; /* horizontal scale */

screen data;

typedef struct{ /* timing information data structure */
int tl; /* ray path calculation time */
int t2; /* screen coord. computation time */
int t3; /* send data to buffer process time */

tinfo;

119

APPENDIX B

MACINTOSH APPLICATION STRUCTURE

This appendix gives the basic structure of a typical Macintosh application

main event loop. For clarity, this example is written using mostly English

statements rather than C code.

main ()

Initialize necessary toolbox routines

do f

perform a system task
check if any data ready from transputers (used for this project

specifically)
check to see if an 'event' has occurred
if so, handle it depending on the type of event

switch (event type)

case mouse button was pressed
find out where it was pressed
handle it depending on where it was pressed

switch (where pressed)

case in a Desk Accessory
let DA handle it

break;
case in the menu bar

handle the command selected
break;

case n the drag region of a window
drag the window
break;

case in the content region of a window
do appropriate action for content selected
break;

case in the window's close box
track the mouse and close window if necessary
break;

case in the grow region of the window
change size of window appropriately
break;

case in zoom (in) box of window
track mouse and zoom window if necessary
break;

120

case in zoom (out) box of window
track mouse and zoom window if necessary
break;

break;
case a key was pressed

perform appropriate action for key(s) pressed
break;

case a window has been activated
activate new window and deactivate old window
break;

case a window requires updating
update contents of window
break;

while (!doneFlag); /* while user has not selected quit */
return(O);

121

LIST OF REFERENCES

Apple Computer, Inc., Inside Macintosh, Vols. I-V, Addison-Wesley, 1988.

Brekhovskikh, L., Waves in a Layered Media, 2nd ed., Academic Press,

1980.

Brekhovskikh, L., and Lysanov, Y., Fundamentals of Ocean Acoustics,

Springer-Verlag, 1982.

Bryant, Gregory R., Design, Implementation and Evaluation of an Abstract
Programming and Communications Interface for a Network of Transputers,
MS Thesis, Naval Postgraduate School, Monterey, CA, June 1988.

Cerven%, V., and Popov, M.M., and P~entik, I., "Computation of Wave

Fields in Inhomogeneous Media - Gaussian Beam Approach", Geophys. J.

R. Astron. Soc., 70, pp. 109-128, 1982.

Clay, C.S., and Medwin H., Acoustical Oceanography: Principles and
Applications, John Wiley & Sons, 1977.

Davidson, C., "Transputers and How to Feed Them", APDALog, pp. 5-7,

January 1988.

Gerald, C.F., and Wheatley, P.O., Applied Numerical Analysis, 3rd ed.,

Addison-Wesley Publishing Company, 1985.

Howe, C.D., and Moxon, B., "How to Program Parallel Processors", IEEE

Spectrum, pp. 36-41, September 1987.

INMOS Corporation, An Introduction To Transputers, Draft 2.0, 12 January

1988.

122

INMOS Corporation, IMS T800 Transputer, Engineering Data Booklet,

April 1987.

INMOS Limited, occam® 2 Reference Manual, Prentice-Hall, 1988.

INMOS Corporation, Technical Note 6, IMS T800 Architecture, 1986.

INMOS Corporation, Technical Note 7, Exploiting Concurrency; A Ray

Tracing Example, by J. Packer, no date given.

INMOS Corporation, Technical Note 17, Performance Maximization, by

P. Atkin, March 1987.

INMOS Corporation, Technical Note 26, Notes on Graphics Support and

Performance Improvements on the IMS T800, by G. Harriman, 29 June 1987.

INMOS Corporation, Technical Note 27, Lies, Damned Lies and

Benchmarks, by R. Shepard and P. Thompson, no date given.

INMOS Corporation, The Transputer Family, Product Overview, June

1986.

Kinsler, L.E., and others, Fundamentals of Acoustics, 3rd ed., John Wiley &

Sons, 1982.

Madariaga, R., "Gaussian Beam Synthetic Seismograms in a Vertically

Varying Medium", Geophys. J. R. Astron. Soc., 79, pp. 589-612, 1984.

Maron, M.J., Numerical Analysis: A Practical Approach, MacMillan

Publishing Co., Inc., 1982.

Naval Postgraduate School Technical Report NPS62-90-003, The Viability

of Acoustic Tomography in Monitoring the Circulation of Monterey Bay, by

J.H. Miller, L.L. Ehret, R.C. Dees, and T.M. Rowan, December 1989.

123

Moler, C.B., and Solomon L.P., "Use of Splines and Numerical

Integration in Geometrical Acoustics", J. Acoust. Soc. Am., 48 (3),

pp. 739-744, 1970.

Munk, W. and Wunsch, C., "Ocean Acoustic Tomography: A Scheme for
Large Scale Monitoring", Deep-Sea Research, Vol. 26A, pp. 123-161, 1979.

Pedersen, M.A., "Acoustic Intensity Anomolies Introduced by Constant
Velocity Gradients", 1. Acoust. Soc. Am., 33, pp. 465-474, 1961.

Porter, M.B., and Bucker, H.P., "Applications of Gaussian Beam Tracing

to Two- and Three-Dimensional Problems in Ocean Acoustics", paper
presented at Paris-IMACS meeting, Copy received 10 October 1989.

Porter, M.B., and Bucker, H.P., "Gaussian Beam Tracing for Computing

Ocean Acoustic Fields", J. Acoust. Soc. Am., 82 (4), pp. 1349-1359, 1987.

Spindel, R.C., "Ocean Acoustic Tomography: A Review", Current Practices

and New Technology in Ocean Engineering, Vol. 11, pp. 7-13, 1986.

Stone, H.S., High-Performance Computer Architecture, Addison-Wesley

Publishing Company, 1987.

124

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 0142 2

Naval Postgraduate School

Monterey, California 93943-5002

3. Main Library 2

National Defence Headquarters

MGen George R. Pearkes Bldg

Ottawa, Ontario Canada

KIA OK2

4. Dr. James H. Miller, Code EC/Mr 10

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5002

5. Dr. Ching-Sang Chiu, Code OC/Ci 2

Department of Oceanography

Naval Postgraduate School

Monterey, California 93943-5002

6. Dr. Chyan Yang, Code EC/Ya 2

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5002

125

7. Chairman, Code EC

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5002

8. Capt Roderick S. Scott, Canadian Forces 2

15 Rigel Rd.

Ottawa, Ontario

Canada, KIK OA1

9. Dr. Lawrence L. Ziomek, Code EC/Zi

Department of Electrical and Computer Engineering

Naval Postgraduate School

Monterey, California 93943-5002

10. National Defence Headquarters

MGen George R. Pearkes Bldg

Ottawa, Ontario Canada
KIA 0K2

Attention: DMAEM 4-2

11. Lt(N) Don Smith, Canadian Forces

Weapons Curricular Office, UX91

Naval Postgraduate School

Monterey, California 93943-5002

12. Lt(N) Ed Chaulk, Canadian Forces

Weapons Curricular Office, WT91

Naval Postgraduate School

Monterey, California 93943-5002

126

